


Model rangkaian saraf mudah: perceptron satu lapisan dan peraturan pembelajarannya
Perceptron satu lapisan ialah salah satu model rangkaian saraf tiruan terawal yang dicadangkan oleh Frank Rosenblatt pada tahun 1957. Ia secara meluas dianggap sebagai kerja mani pada rangkaian saraf. Pada mulanya, perceptron satu lapisan direka untuk menyelesaikan masalah klasifikasi binari, iaitu, untuk memisahkan sampel kategori yang berbeza. Struktur model adalah sangat mudah, mengandungi hanya satu nod keluaran dan beberapa nod input. Dengan pemberat linear dan ambang isyarat input, perceptron lapisan tunggal dapat memperoleh hasil pengelasan. Oleh kerana kesederhanaan dan kebolehtafsirannya, perceptron satu lapisan menarik perhatian meluas pada masa itu dan dianggap sebagai peristiwa penting dalam pembangunan rangkaian saraf. Walau bagaimanapun, disebabkan oleh batasannya, perceptron satu lapisan hanya sesuai untuk masalah boleh dipisahkan secara linear dan tidak dapat menyelesaikan masalah bukan linear. Ini memberi inspirasi kepada penyelidik seterusnya untuk membangunkan lagi perceptron berbilang lapisan dan model rangkaian saraf lain yang lebih kompleks.
Algoritma pembelajaran perceptron satu lapisan dipanggil peraturan pembelajaran perceptron. Matlamatnya adalah untuk melaraskan berat dan berat sebelah secara berterusan supaya perceptron boleh mengklasifikasikan data dengan betul. Idea teras peraturan pembelajaran perceptron adalah untuk mengemas kini berat dan berat sebelah berdasarkan isyarat ralat supaya output perceptron lebih dekat dengan nilai sebenar. Langkah-langkah khusus algoritma adalah seperti berikut: Pertama, mulakan berat dan berat sebelah secara rawak. Kemudian, bagi setiap sampel latihan, nilai output perceptron dikira dan dibandingkan dengan nilai yang betul. Jika terdapat ralat, pemberat dan berat sebelah dilaraskan berdasarkan isyarat ralat. Dengan cara ini, melalui berbilang lelaran, perceptron akan mempelajari secara beransur-ansur sempadan pengelasan yang betul.
Peraturan pembelajaran perceptron satu lapisan boleh dinyatakan sebagai formula berikut:
w(i+1)=w(i)+η(y-y')x
w (i) mewakili berat selepas lelaran pusingan ke-i, w(i+1) mewakili berat selepas lelaran pusingan ke-i+1, eta ialah kadar pembelajaran, y ialah nilai keluaran yang betul, y' ialah nilai keluaran perceptron, x ialah vektor input.
Kebaikan dan keburukan perceptron satu lapisan adalah seperti berikut:
①Kelebihan
- Struktur yang mudah dan kelajuan pengiraan yang pantas.
- Algoritma pembelajaran adalah mudah dan mudah untuk dilaksanakan.
- Untuk set data boleh dipisahkan secara linear, keputusan pengelasan yang betul boleh diperolehi.
②Keburukan
- Untuk set data bukan linear, pengelasan tidak boleh dilakukan.
- Untuk set data dengan kategori bertindih, pengelasan yang betul tidak boleh dilakukan.
- Sensitif kepada data yang bising dan terdedah kepada gangguan yang membawa kepada ralat pengelasan.
Walaupun perceptron satu lapisan mempunyai beberapa batasan, ia masih merupakan bahagian penting dalam rangkaian saraf dan merupakan model pengenalan yang baik untuk pemula. Di samping itu, peraturan pembelajaran perceptron satu lapisan juga memberikan inspirasi tertentu untuk algoritma pembelajaran model rangkaian saraf kemudian yang lebih kompleks, seperti perceptron berbilang lapisan, rangkaian saraf konvolusi, rangkaian saraf berulang, dsb.
Atas ialah kandungan terperinci Model rangkaian saraf mudah: perceptron satu lapisan dan peraturan pembelajarannya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Meneroka kerja -kerja dalam model bahasa dengan skop Gemma Memahami kerumitan model bahasa AI adalah satu cabaran penting. Pelepasan Google Gemma Skop, Toolkit Komprehensif, menawarkan penyelidik cara yang kuat untuk menyelidiki

Membuka Kejayaan Perniagaan: Panduan untuk Menjadi Penganalisis Perisikan Perniagaan Bayangkan mengubah data mentah ke dalam pandangan yang boleh dilakukan yang mendorong pertumbuhan organisasi. Ini adalah kuasa penganalisis Perniagaan Perniagaan (BI) - peranan penting dalam GU

Pernyataan Jadual Alter SQL: Menambah lajur secara dinamik ke pangkalan data anda Dalam pengurusan data, kebolehsuaian SQL adalah penting. Perlu menyesuaikan struktur pangkalan data anda dengan cepat? Pernyataan Jadual ALTER adalah penyelesaian anda. Butiran panduan ini menambah colu

Pengenalan Bayangkan pejabat yang sibuk di mana dua profesional bekerjasama dalam projek kritikal. Penganalisis perniagaan memberi tumpuan kepada objektif syarikat, mengenal pasti bidang penambahbaikan, dan memastikan penjajaran strategik dengan trend pasaran. Simu

Pengiraan dan Analisis Data Excel: Penjelasan terperinci mengenai fungsi Count dan Counta Pengiraan dan analisis data yang tepat adalah kritikal dalam Excel, terutamanya apabila bekerja dengan set data yang besar. Excel menyediakan pelbagai fungsi untuk mencapai matlamat ini, dengan fungsi Count dan CountA menjadi alat utama untuk mengira bilangan sel di bawah keadaan yang berbeza. Walaupun kedua -dua fungsi digunakan untuk mengira sel, sasaran reka bentuk mereka disasarkan pada jenis data yang berbeza. Mari menggali butiran khusus fungsi Count dan Counta, menyerlahkan ciri dan perbezaan unik mereka, dan belajar cara menerapkannya dalam analisis data. Gambaran keseluruhan perkara utama Memahami kiraan dan cou

Revolusi AI Google Chrome: Pengalaman melayari yang diperibadikan dan cekap Kecerdasan Buatan (AI) dengan cepat mengubah kehidupan seharian kita, dan Google Chrome mengetuai pertuduhan di arena pelayaran web. Artikel ini meneroka exciti

Impak Reimagining: garis bawah empat kali ganda Selama terlalu lama, perbualan telah dikuasai oleh pandangan sempit kesan AI, terutama memberi tumpuan kepada keuntungan bawah. Walau bagaimanapun, pendekatan yang lebih holistik mengiktiraf kesalinghubungan BU

Perkara bergerak terus ke arah itu. Pelaburan yang dicurahkan ke dalam penyedia perkhidmatan kuantum dan permulaan menunjukkan bahawa industri memahami kepentingannya. Dan semakin banyak kes penggunaan dunia nyata muncul untuk menunjukkan nilainya


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.