


Model rangkaian saraf mudah: perceptron satu lapisan dan peraturan pembelajarannya
Perceptron satu lapisan ialah salah satu model rangkaian saraf tiruan terawal yang dicadangkan oleh Frank Rosenblatt pada tahun 1957. Ia secara meluas dianggap sebagai kerja mani pada rangkaian saraf. Pada mulanya, perceptron satu lapisan direka untuk menyelesaikan masalah klasifikasi binari, iaitu, untuk memisahkan sampel kategori yang berbeza. Struktur model adalah sangat mudah, mengandungi hanya satu nod keluaran dan beberapa nod input. Dengan pemberat linear dan ambang isyarat input, perceptron lapisan tunggal dapat memperoleh hasil pengelasan. Oleh kerana kesederhanaan dan kebolehtafsirannya, perceptron satu lapisan menarik perhatian meluas pada masa itu dan dianggap sebagai peristiwa penting dalam pembangunan rangkaian saraf. Walau bagaimanapun, disebabkan oleh batasannya, perceptron satu lapisan hanya sesuai untuk masalah boleh dipisahkan secara linear dan tidak dapat menyelesaikan masalah bukan linear. Ini memberi inspirasi kepada penyelidik seterusnya untuk membangunkan lagi perceptron berbilang lapisan dan model rangkaian saraf lain yang lebih kompleks.
Algoritma pembelajaran perceptron satu lapisan dipanggil peraturan pembelajaran perceptron. Matlamatnya adalah untuk melaraskan berat dan berat sebelah secara berterusan supaya perceptron boleh mengklasifikasikan data dengan betul. Idea teras peraturan pembelajaran perceptron adalah untuk mengemas kini berat dan berat sebelah berdasarkan isyarat ralat supaya output perceptron lebih dekat dengan nilai sebenar. Langkah-langkah khusus algoritma adalah seperti berikut: Pertama, mulakan berat dan berat sebelah secara rawak. Kemudian, bagi setiap sampel latihan, nilai output perceptron dikira dan dibandingkan dengan nilai yang betul. Jika terdapat ralat, pemberat dan berat sebelah dilaraskan berdasarkan isyarat ralat. Dengan cara ini, melalui berbilang lelaran, perceptron akan mempelajari secara beransur-ansur sempadan pengelasan yang betul.
Peraturan pembelajaran perceptron satu lapisan boleh dinyatakan sebagai formula berikut:
w(i+1)=w(i)+η(y-y')x
w (i) mewakili berat selepas lelaran pusingan ke-i, w(i+1) mewakili berat selepas lelaran pusingan ke-i+1, eta ialah kadar pembelajaran, y ialah nilai keluaran yang betul, y' ialah nilai keluaran perceptron, x ialah vektor input.
Kebaikan dan keburukan perceptron satu lapisan adalah seperti berikut:
①Kelebihan
- Struktur yang mudah dan kelajuan pengiraan yang pantas.
- Algoritma pembelajaran adalah mudah dan mudah untuk dilaksanakan.
- Untuk set data boleh dipisahkan secara linear, keputusan pengelasan yang betul boleh diperolehi.
②Keburukan
- Untuk set data bukan linear, pengelasan tidak boleh dilakukan.
- Untuk set data dengan kategori bertindih, pengelasan yang betul tidak boleh dilakukan.
- Sensitif kepada data yang bising dan terdedah kepada gangguan yang membawa kepada ralat pengelasan.
Walaupun perceptron satu lapisan mempunyai beberapa batasan, ia masih merupakan bahagian penting dalam rangkaian saraf dan merupakan model pengenalan yang baik untuk pemula. Di samping itu, peraturan pembelajaran perceptron satu lapisan juga memberikan inspirasi tertentu untuk algoritma pembelajaran model rangkaian saraf kemudian yang lebih kompleks, seperti perceptron berbilang lapisan, rangkaian saraf konvolusi, rangkaian saraf berulang, dsb.
Atas ialah kandungan terperinci Model rangkaian saraf mudah: perceptron satu lapisan dan peraturan pembelajarannya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

AI Menambah Penyediaan Makanan Walaupun masih dalam penggunaan baru, sistem AI semakin digunakan dalam penyediaan makanan. Robot yang didorong oleh AI digunakan di dapur untuk mengautomasikan tugas penyediaan makanan, seperti membuang burger, membuat pizza, atau memasang SA

Pengenalan Memahami ruang nama, skop, dan tingkah laku pembolehubah dalam fungsi Python adalah penting untuk menulis dengan cekap dan mengelakkan kesilapan runtime atau pengecualian. Dalam artikel ini, kami akan menyelidiki pelbagai ASP

Pengenalan Bayangkan berjalan melalui galeri seni, dikelilingi oleh lukisan dan patung yang terang. Sekarang, bagaimana jika anda boleh bertanya setiap soalan dan mendapatkan jawapan yang bermakna? Anda mungkin bertanya, "Kisah apa yang anda ceritakan?

Meneruskan irama produk, bulan ini MediaTek telah membuat satu siri pengumuman, termasuk Kompanio Ultra dan Dimensity 9400 yang baru. Produk ini mengisi bahagian perniagaan MediaTek yang lebih tradisional, termasuk cip untuk telefon pintar

#1 Google melancarkan Agent2Agent Cerita: Ia Isnin pagi. Sebagai perekrut berkuasa AI, anda bekerja lebih pintar, tidak lebih sukar. Anda log masuk ke papan pemuka syarikat anda di telefon anda. Ia memberitahu anda tiga peranan kritikal telah diperolehi, dijadualkan, dan dijadualkan untuk

Saya akan meneka bahawa anda mesti. Kita semua seolah -olah tahu bahawa psychobabble terdiri daripada pelbagai perbualan yang menggabungkan pelbagai terminologi psikologi dan sering akhirnya menjadi tidak dapat difahami atau sepenuhnya tidak masuk akal. Semua yang anda perlu lakukan untuk memuntahkan fo

Hanya 9.5% plastik yang dihasilkan pada tahun 2022 dibuat daripada bahan kitar semula, menurut satu kajian baru yang diterbitkan minggu ini. Sementara itu, plastik terus menumpuk di tapak pelupusan sampah -dan ekosistem -sekitar dunia. Tetapi bantuan sedang dalam perjalanan. Pasukan Engin

Perbualan baru -baru ini dengan Andy Macmillan, Ketua Pegawai Eksekutif Platform Analytics Enterprise terkemuka Alteryx, menonjolkan peranan kritikal namun kurang dihargai ini dalam revolusi AI. Seperti yang dijelaskan oleh Macmillan, jurang antara data perniagaan mentah dan maklumat siap sedia


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.