Lelaran dasar dan lelaran nilai: kaedah utama pembelajaran pengukuhan
Lelaran dasar dan lelaran nilai ialah dua algoritma yang biasa digunakan dalam pembelajaran pengukuhan. Lelaran dasar meningkatkan prestasi ejen dengan menambah baik polisi secara berulang. Lelaran nilai mengemas kini fungsi nilai keadaan secara berulang untuk mendapatkan nilai keadaan optimum. Idea teras kedua-duanya adalah berbeza, tetapi kedua-duanya boleh memainkan peranan dalam mengoptimumkan strategi dalam tugasan pembelajaran pengukuhan.
Lelaran strategi
Lelaran strategi secara beransur-ansur menambah baik strategi melalui lelaran sehingga strategi yang stabil dicapai. Dalam lelaran dasar, dasar mula-mula dimulakan dan kemudian dipertingkatkan secara beransur-ansur melalui berbilang lelaran. Setiap lelaran terdiri daripada dua langkah: menilai strategi semasa dan menambah baik strategi semasa. Tujuan menilai strategi semasa adalah untuk mengira nilai ganjaran yang dijangkakan bagi strategi semasa, yang boleh dicapai melalui kaedah Monte Carlo atau kaedah perbezaan temporal. Tujuan penambahbaikan strategi semasa adalah untuk mencari strategi yang lebih baik untuk menggantikan strategi semasa, yang boleh dicapai melalui kaedah kecerunan dasar deterministik atau kaedah kecerunan dasar Monte Carlo.
Lelaran nilai
Lelaran nilai adalah untuk mengemas kini secara beransur-ansur fungsi nilai keadaan melalui lelaran untuk mencapai fungsi nilai keadaan yang stabil. Dalam lelaran nilai, fungsi nilai keadaan perlu dimulakan terlebih dahulu, dan kemudian fungsi itu dikemas kini secara beransur-ansur melalui berbilang lelaran. Setiap lelaran terdiri daripada dua langkah: mengira nilai ganjaran yang dijangkakan bagi fungsi nilai keadaan semasa dan mengemas kini fungsi nilai keadaan semasa. Tujuan pengiraan nilai ganjaran yang dijangkakan bagi fungsi nilai keadaan semasa adalah untuk menentukan nilai ganjaran yang dijangkakan bagi setiap keadaan, yang boleh dicapai dengan kaedah Monte Carlo atau kaedah perbezaan temporal. Kaedah Monte Carlo menganggarkan nilai ganjaran yang dijangkakan dengan mensimulasikan pelbagai pengalaman sebenar, manakala kaedah perbezaan temporal menggunakan perbezaan antara anggaran semasa dan anggaran keadaan seterusnya untuk mengemas kini nilai ganjaran yang dijangkakan. Tujuan mengemas kini fungsi nilai keadaan semasa adalah untuk mencari fungsi nilai keadaan yang lebih baik untuk menggantikan fungsi semasa, yang boleh dicapai melalui persamaan Bellman. Persamaan Bellman mengira fungsi nilai keadaan semasa dengan mengumpul ganjaran keadaan semasa dengan ganjaran yang dijangkakan keadaan seterusnya. Dengan menggunakan persamaan Bellman secara berterusan, fungsi nilai keadaan boleh dikemas kini secara beransur-ansur sehingga fungsi nilai keadaan stabil dicapai. Lelaran nilai ialah kaedah yang cekap untuk mencari dasar yang optimum dalam pembelajaran pengukuhan. Dengan mengemas kini fungsi nilai keadaan secara beransur-ansur, lelaran nilai boleh mencari dasar optimum yang memaksimumkan ganjaran terkumpul.
Perbezaan antara lelaran dasar dan lelaran nilai
Walaupun lelaran dasar dan lelaran nilai adalah kedua-dua kaedah yang biasa digunakan dalam pembelajaran pengukuhan, terdapat perbezaan yang jelas dalam kaedah dan matlamat pelaksanaannya.
1. Kaedah pelaksanaan
Lelaran strategi ialah kaedah berasaskan strategi yang mencari strategi optimum dengan mengemas kini strategi secara berterusan. Secara khusus, lelaran strategi terdiri daripada dua langkah: penilaian strategi dan penambahbaikan strategi. Dalam penilaian dasar, kami menilai fungsi nilai setiap negeri melalui dasar semasa dalam penambahbaikan dasar, kami mengemas kini dasar berdasarkan fungsi nilai keadaan semasa untuk menjadikan dasar lebih dekat dengan dasar yang optimum.
Lelaran nilai ialah kaedah berdasarkan fungsi nilai, yang mencari strategi optimum dengan mengemas kini fungsi nilai secara berterusan. Secara khusus, lelaran nilai mengemas kini fungsi nilai setiap keadaan secara berulang sehingga fungsi nilai menumpu. Kemudian, kita boleh mendapatkan strategi optimum berdasarkan fungsi nilai akhir.
2. Matlamat
Matlamat lelaran strategi adalah untuk terus mengoptimumkan strategi dan mendekati strategi optimum dengan mengemas kini strategi secara berterusan. Walau bagaimanapun, oleh kerana setiap lelaran memerlukan penilaian dasar dan penambahbaikan dasar, jumlah pengiraan adalah besar.
Matlamat lelaran nilai adalah untuk mendapatkan strategi optimum dengan mengoptimumkan fungsi nilai keadaan. Ia menghampiri fungsi nilai optimum dengan mengemas kini fungsi nilai setiap keadaan secara berterusan, dan kemudian memperoleh strategi optimum berdasarkan fungsi nilai optimum ini. Berbanding dengan lelaran dasar, lelaran nilai memerlukan kurang pengiraan.
3. Kelajuan penumpuan
Secara umumnya, lelaran dasar biasanya menumpu kepada dasar optimum dengan lebih cepat, tetapi setiap lelaran biasanya memerlukan lebih banyak pengiraan. Lelaran nilai mungkin memerlukan lebih banyak lelaran untuk menumpu.
4. Interaksi dengan teknik lain
Lelaran nilai lebih mudah digabungkan dengan kaedah penghampiran fungsi (seperti pembelajaran mendalam) kerana ia memfokuskan pada mengoptimumkan fungsi nilai. Lelaran dasar lebih biasa digunakan dalam senario dengan model yang jelas.
Atas ialah kandungan terperinci Lelaran dasar dan lelaran nilai: kaedah utama pembelajaran pengukuhan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Meneroka kerja -kerja dalam model bahasa dengan skop Gemma Memahami kerumitan model bahasa AI adalah satu cabaran penting. Pelepasan Google Gemma Skop, Toolkit Komprehensif, menawarkan penyelidik cara yang kuat untuk menyelidiki

Membuka Kejayaan Perniagaan: Panduan untuk Menjadi Penganalisis Perisikan Perniagaan Bayangkan mengubah data mentah ke dalam pandangan yang boleh dilakukan yang mendorong pertumbuhan organisasi. Ini adalah kuasa penganalisis Perniagaan Perniagaan (BI) - peranan penting dalam GU

Pernyataan Jadual Alter SQL: Menambah lajur secara dinamik ke pangkalan data anda Dalam pengurusan data, kebolehsuaian SQL adalah penting. Perlu menyesuaikan struktur pangkalan data anda dengan cepat? Pernyataan Jadual ALTER adalah penyelesaian anda. Butiran panduan ini menambah colu

Pengenalan Bayangkan pejabat yang sibuk di mana dua profesional bekerjasama dalam projek kritikal. Penganalisis perniagaan memberi tumpuan kepada objektif syarikat, mengenal pasti bidang penambahbaikan, dan memastikan penjajaran strategik dengan trend pasaran. Simu

Pengiraan dan Analisis Data Excel: Penjelasan terperinci mengenai fungsi Count dan Counta Pengiraan dan analisis data yang tepat adalah kritikal dalam Excel, terutamanya apabila bekerja dengan set data yang besar. Excel menyediakan pelbagai fungsi untuk mencapai matlamat ini, dengan fungsi Count dan CountA menjadi alat utama untuk mengira bilangan sel di bawah keadaan yang berbeza. Walaupun kedua -dua fungsi digunakan untuk mengira sel, sasaran reka bentuk mereka disasarkan pada jenis data yang berbeza. Mari menggali butiran khusus fungsi Count dan Counta, menyerlahkan ciri dan perbezaan unik mereka, dan belajar cara menerapkannya dalam analisis data. Gambaran keseluruhan perkara utama Memahami kiraan dan cou

Revolusi AI Google Chrome: Pengalaman melayari yang diperibadikan dan cekap Kecerdasan Buatan (AI) dengan cepat mengubah kehidupan seharian kita, dan Google Chrome mengetuai pertuduhan di arena pelayaran web. Artikel ini meneroka exciti

Impak Reimagining: garis bawah empat kali ganda Selama terlalu lama, perbualan telah dikuasai oleh pandangan sempit kesan AI, terutama memberi tumpuan kepada keuntungan bawah. Walau bagaimanapun, pendekatan yang lebih holistik mengiktiraf kesalinghubungan BU

Perkara bergerak terus ke arah itu. Pelaburan yang dicurahkan ke dalam penyedia perkhidmatan kuantum dan permulaan menunjukkan bahawa industri memahami kepentingannya. Dan semakin banyak kes penggunaan dunia nyata muncul untuk menunjukkan nilainya


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Dreamweaver Mac版
Alat pembangunan web visual