cari
RumahPeranti teknologiAIKepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya

Kepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya

Pembelajaran mesin telah menjadi alat penting dalam organisasi dari semua saiz untuk mendapatkan cerapan dan membuat keputusan berdasarkan data. Walau bagaimanapun, kejayaan projek pembelajaran mesin banyak bergantung pada kualiti data. Kualiti data yang lemah membawa kepada ramalan yang tidak tepat dan prestasi model yang lemah. Oleh itu, adalah penting untuk memahami kepentingan kualiti data dalam pembelajaran mesin dan menggunakan pelbagai teknik untuk memastikan data berkualiti tinggi.

Data ialah sumber yang sangat diperlukan dan penting untuk pembelajaran mesin Pelbagai jenis data memainkan peranan masing-masing dalam pembinaan model. Pelbagai jenis data seperti data kategori, data berangka, data siri masa dan data teks digunakan secara meluas. Ketersediaan data berkualiti tinggi adalah faktor utama dalam memastikan model adalah tepat dan boleh dipercayai.

Bagaimana untuk memastikan kualiti data?

Secara amnya, terdapat empat langkah: pengumpulan data, suntikan data, prapemprosesan data dan kerja ciri. Khususnya:

Mengumpul data

Penyediaan data untuk pembelajaran mesin sering dipanggil saluran paip ETL untuk mengekstrak, mengubah dan memuatkan.

Pengekstrakan: Dapatkan data daripada sumber berbeza termasuk pangkalan data, API atau fail biasa seperti CSV atau Excel. Data boleh berstruktur atau tidak berstruktur.

Transformasi ialah proses menyesuaikan data kepada model pembelajaran mesin. Ia termasuk membersihkan data untuk menghapuskan ralat atau ketidakkonsistenan, menyeragamkan data dan menukarnya kepada format yang boleh diterima oleh model. Selain itu, kejuruteraan ciri juga diperlukan untuk menukar data mentah kepada set ciri sebagai input kepada model.

Muat: Langkah terakhir ialah memuat naik atau memuatkan data yang ditukar ke destinasi seperti pangkalan data, stor data atau sistem fail. Data yang dijana boleh digunakan untuk melatih atau menguji model pembelajaran mesin.

Selepas mengumpul data, anda perlu menyuntik data.

Data Suntikan

Untuk meningkatkan prestasi model pembelajaran mesin, kami perlu menambah data baharu pada pelayan data sedia ada untuk mengemas kini pangkalan data dan menambah lebih banyak data yang berbeza. Proses ini selalunya diautomasikan dengan bantuan alat yang mudah.

Seperti:

Sisipan kelompok: Masukkan data dalam kelompok, biasanya pada masa yang ditetapkan.

Suntikan masa nyata: Suntikan data serta-merta selepas ia dijana.

Suntikan strim: Data disuntik dalam bentuk aliran berterusan. Ia kerap digunakan dalam masa nyata.

Peringkat ketiga saluran paip data ialah prapemprosesan data.

Prapemprosesan Data

Pemprosesan data sedang menyediakan data untuk digunakan dalam model pembelajaran mesin, ini merupakan langkah penting dalam pembelajaran mesin kerana ia memastikan data berada dalam format yang boleh digunakan oleh model dan sebarang ralat atau ketidakkonsistenan diselesaikan .

Pemprosesan data biasanya melibatkan gabungan pembersihan data, transformasi data dan penyeragaman data. Langkah tepat untuk pemprosesan data bergantung pada jenis data dan model pembelajaran mesin yang anda gunakan.

Aliran umum pemprosesan data:

Langkah umum:

1. Pembersihan data: Alih keluar ralat, ketidakkonsistenan dan outlier daripada pangkalan data.

2. Penukaran data: Data ditukar kepada bentuk yang boleh digunakan oleh model pembelajaran mesin, seperti menukar pembolehubah kategori kepada pembolehubah berangka.

3 Normalisasi data: Menskalakan data dalam julat tertentu antara 0 dan 1, yang membantu meningkatkan prestasi beberapa model pembelajaran mesin.

4. Tambahkan data: Tambahkan perubahan atau tindakan pada titik data sedia ada untuk membuat titik data baharu.

5 Pemilihan atau pengekstrakan ciri: Kenal pasti dan pilih ciri asas daripada data untuk digunakan sebagai input kepada model pembelajaran mesin.

6. Pengesanan outlier: Kenal pasti dan alih keluar titik data yang menyimpang dengan ketara daripada jumlah data yang besar. Outlier boleh mengubah keputusan analisis dan menjejaskan prestasi model pembelajaran mesin.

7. Kesan Pendua: Kenal pasti dan alih keluar titik data pendua. Data pendua boleh membawa kepada keputusan yang tidak tepat atau tidak boleh dipercayai dan meningkatkan saiz set data, menjadikannya sukar untuk diproses dan dianalisis.

8. Kenal pasti arah aliran: Cari corak dan arah aliran dalam data anda yang boleh anda gunakan untuk memaklumkan ramalan masa hadapan atau lebih memahami sifat data anda.

Pemprosesan data adalah penting dalam pembelajaran mesin kerana ia memastikan data berada dalam bentuk yang boleh digunakan oleh model dan menghapuskan sebarang ralat atau ketidakkonsistenan. Ini meningkatkan prestasi model dan ketepatan ramalan.

Peringkat akhir saluran paip data ialah kejuruteraan ciri.

Kejuruteraan Ciri

Kejuruteraan ciri menukar data mentah kepada ciri yang boleh digunakan sebagai input kepada model pembelajaran mesin. Ini melibatkan mengenal pasti dan mengekstrak data paling kritikal daripada bahan mentah dan menukarnya kepada format yang boleh digunakan oleh model. Kejuruteraan ciri adalah penting dalam pembelajaran mesin kerana ia boleh memberi kesan ketara kepada prestasi model.

Kejuruteraan ciri melibatkan:

Pengekstrakan ciri: mengekstrak maklumat yang berkaitan daripada data mentah. Contohnya, kenal pasti ciri yang paling penting atau gabungkan ciri sedia ada untuk mencipta ciri baharu.

Pengubahsuaian atribut: Tukar jenis atribut, seperti menukar pembolehubah kategori kepada pembolehubah berangka atau menskalakan data agar sesuai dengan julat tertentu.

Pemilihan Ciri: Tentukan ciri asas data untuk digunakan sebagai input kepada model pembelajaran mesin.

Pengurangan dimensi: Kurangkan bilangan ciri dalam pangkalan data dengan mengalih keluar ciri berlebihan atau tidak berkaitan.

Tambah Data: Tambahkan perubahan atau tindakan pada titik data sedia ada untuk mencipta yang baharu.

Kejuruteraan ciri memerlukan pemahaman yang baik tentang data, masalah yang perlu diselesaikan dan algoritma pembelajaran mesin yang akan digunakan. Proses ini adalah berulang dan percubaan, dan mungkin memerlukan berbilang lelaran untuk mencari set ciri optimum yang meningkatkan prestasi model.

Atas ialah kandungan terperinci Kepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Panduan Pemimpin Perniagaan untuk Pengoptimuman Enjin Generatif (GEO)Panduan Pemimpin Perniagaan untuk Pengoptimuman Enjin Generatif (GEO)May 03, 2025 am 11:14 AM

Google mengetuai peralihan ini. Ciri "AI Gambaran Keseluruhan" sudah melayani lebih daripada satu bilion pengguna, memberikan jawapan lengkap sebelum ada yang mengklik pautan. [^2] Pemain lain juga mendapat tanah dengan cepat. Chatgpt, microsoft copilot, dan pe

Permulaan ini menggunakan ejen AI untuk melawan iklan jahat dan akaun peniruPermulaan ini menggunakan ejen AI untuk melawan iklan jahat dan akaun peniruMay 03, 2025 am 11:13 AM

Pada tahun 2022, beliau mengasaskan permulaan pertahanan kejuruteraan sosial Doppel untuk berbuat demikian. Dan sebagai penjenayah siber memanfaatkan model AI yang lebih maju untuk mengatasi serangan mereka, sistem AI Doppel telah membantu perniagaan memerangi mereka secara lebih cepat dan lebih cepat dan lebih cepat

Bagaimana model dunia secara radikal membentuk semula masa depan AI dan LLM generatifBagaimana model dunia secara radikal membentuk semula masa depan AI dan LLM generatifMay 03, 2025 am 11:12 AM

Voila, melalui berinteraksi dengan model dunia yang sesuai, AI generatif dan LLMs boleh didorong secara substansial. Mari kita bercakap mengenainya. Analisis terobosan AI yang inovatif ini adalah sebahagian daripada liputan lajur Forbes yang berterusan pada AI terkini, termasuk

May Day 2050: Apa yang kita tinggalkan untuk meraikan?May Day 2050: Apa yang kita tinggalkan untuk meraikan?May 03, 2025 am 11:11 AM

Hari Buruh 2050. Taman di seluruh negara mengisi dengan keluarga yang menikmati barbeku tradisional manakala perarakan nostalgia angin melalui jalan -jalan bandar. Namun perayaan kini membawa kualiti muzium seperti muzium-reenactment bersejarah dan bukannya peringatan c

Pengesan DeepFake yang tidak pernah anda dengar tentang itu 98% tepatPengesan DeepFake yang tidak pernah anda dengar tentang itu 98% tepatMay 03, 2025 am 11:10 AM

Untuk membantu menangani trend yang mendesak dan mengganggu ini, artikel yang dikaji semula dalam edisi Februari 2025 TEM Journal menyediakan salah satu penilaian yang paling jelas dan didorong oleh data mengenai tempat yang dihadapi oleh Deepfake teknologi pada masa ini. Penyelidik

Kuantum Bakat Perang: Krisis Tersembunyi Teknologi Mengancam ' s Frontier SeterusnyaKuantum Bakat Perang: Krisis Tersembunyi Teknologi Mengancam ' s Frontier SeterusnyaMay 03, 2025 am 11:09 AM

Dari mengurangkan masa yang diperlukan untuk merumuskan ubat -ubatan baru untuk mewujudkan tenaga yang lebih hijau, akan ada peluang besar bagi perniagaan untuk memecahkan tanah baru. Terdapat masalah besar, walaupun: ada kekurangan orang yang teruk dengan kemahiran BUSI

Prototaip: Bakteria ini dapat menjana elektrikPrototaip: Bakteria ini dapat menjana elektrikMay 03, 2025 am 11:08 AM

Bertahun -tahun yang lalu, saintis mendapati bahawa jenis bakteria tertentu kelihatan bernafas dengan menjana elektrik, dan bukannya mengambil oksigen, tetapi bagaimana mereka melakukannya adalah misteri. Kajian baru yang diterbitkan dalam jurnal Cell mengenal pasti bagaimana ini berlaku: mikrob

AI dan Cybersecurity: Perhitungan 100 Hari Pentadbiran BaruAI dan Cybersecurity: Perhitungan 100 Hari Pentadbiran BaruMay 03, 2025 am 11:07 AM

Pada persidangan RSAC 2025 minggu ini, Snyk menganjurkan panel yang tepat pada masanya bertajuk "The First 100 Days: How AI, Dasar & Cybersecurity Collide," yang menampilkan barisan All-Star: Jen Easterly, bekas pengarah CISA; Nicole Perlroth, bekas wartawan dan Partne

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular