cari
RumahPeranti teknologiAIKepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya

Kepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya

Pembelajaran mesin telah menjadi alat penting dalam organisasi dari semua saiz untuk mendapatkan cerapan dan membuat keputusan berdasarkan data. Walau bagaimanapun, kejayaan projek pembelajaran mesin banyak bergantung pada kualiti data. Kualiti data yang lemah membawa kepada ramalan yang tidak tepat dan prestasi model yang lemah. Oleh itu, adalah penting untuk memahami kepentingan kualiti data dalam pembelajaran mesin dan menggunakan pelbagai teknik untuk memastikan data berkualiti tinggi.

Data ialah sumber yang sangat diperlukan dan penting untuk pembelajaran mesin Pelbagai jenis data memainkan peranan masing-masing dalam pembinaan model. Pelbagai jenis data seperti data kategori, data berangka, data siri masa dan data teks digunakan secara meluas. Ketersediaan data berkualiti tinggi adalah faktor utama dalam memastikan model adalah tepat dan boleh dipercayai.

Bagaimana untuk memastikan kualiti data?

Secara amnya, terdapat empat langkah: pengumpulan data, suntikan data, prapemprosesan data dan kerja ciri. Khususnya:

Mengumpul data

Penyediaan data untuk pembelajaran mesin sering dipanggil saluran paip ETL untuk mengekstrak, mengubah dan memuatkan.

Pengekstrakan: Dapatkan data daripada sumber berbeza termasuk pangkalan data, API atau fail biasa seperti CSV atau Excel. Data boleh berstruktur atau tidak berstruktur.

Transformasi ialah proses menyesuaikan data kepada model pembelajaran mesin. Ia termasuk membersihkan data untuk menghapuskan ralat atau ketidakkonsistenan, menyeragamkan data dan menukarnya kepada format yang boleh diterima oleh model. Selain itu, kejuruteraan ciri juga diperlukan untuk menukar data mentah kepada set ciri sebagai input kepada model.

Muat: Langkah terakhir ialah memuat naik atau memuatkan data yang ditukar ke destinasi seperti pangkalan data, stor data atau sistem fail. Data yang dijana boleh digunakan untuk melatih atau menguji model pembelajaran mesin.

Selepas mengumpul data, anda perlu menyuntik data.

Data Suntikan

Untuk meningkatkan prestasi model pembelajaran mesin, kami perlu menambah data baharu pada pelayan data sedia ada untuk mengemas kini pangkalan data dan menambah lebih banyak data yang berbeza. Proses ini selalunya diautomasikan dengan bantuan alat yang mudah.

Seperti:

Sisipan kelompok: Masukkan data dalam kelompok, biasanya pada masa yang ditetapkan.

Suntikan masa nyata: Suntikan data serta-merta selepas ia dijana.

Suntikan strim: Data disuntik dalam bentuk aliran berterusan. Ia kerap digunakan dalam masa nyata.

Peringkat ketiga saluran paip data ialah prapemprosesan data.

Prapemprosesan Data

Pemprosesan data sedang menyediakan data untuk digunakan dalam model pembelajaran mesin, ini merupakan langkah penting dalam pembelajaran mesin kerana ia memastikan data berada dalam format yang boleh digunakan oleh model dan sebarang ralat atau ketidakkonsistenan diselesaikan .

Pemprosesan data biasanya melibatkan gabungan pembersihan data, transformasi data dan penyeragaman data. Langkah tepat untuk pemprosesan data bergantung pada jenis data dan model pembelajaran mesin yang anda gunakan.

Aliran umum pemprosesan data:

Langkah umum:

1. Pembersihan data: Alih keluar ralat, ketidakkonsistenan dan outlier daripada pangkalan data.

2. Penukaran data: Data ditukar kepada bentuk yang boleh digunakan oleh model pembelajaran mesin, seperti menukar pembolehubah kategori kepada pembolehubah berangka.

3 Normalisasi data: Menskalakan data dalam julat tertentu antara 0 dan 1, yang membantu meningkatkan prestasi beberapa model pembelajaran mesin.

4. Tambahkan data: Tambahkan perubahan atau tindakan pada titik data sedia ada untuk membuat titik data baharu.

5 Pemilihan atau pengekstrakan ciri: Kenal pasti dan pilih ciri asas daripada data untuk digunakan sebagai input kepada model pembelajaran mesin.

6. Pengesanan outlier: Kenal pasti dan alih keluar titik data yang menyimpang dengan ketara daripada jumlah data yang besar. Outlier boleh mengubah keputusan analisis dan menjejaskan prestasi model pembelajaran mesin.

7. Kesan Pendua: Kenal pasti dan alih keluar titik data pendua. Data pendua boleh membawa kepada keputusan yang tidak tepat atau tidak boleh dipercayai dan meningkatkan saiz set data, menjadikannya sukar untuk diproses dan dianalisis.

8. Kenal pasti arah aliran: Cari corak dan arah aliran dalam data anda yang boleh anda gunakan untuk memaklumkan ramalan masa hadapan atau lebih memahami sifat data anda.

Pemprosesan data adalah penting dalam pembelajaran mesin kerana ia memastikan data berada dalam bentuk yang boleh digunakan oleh model dan menghapuskan sebarang ralat atau ketidakkonsistenan. Ini meningkatkan prestasi model dan ketepatan ramalan.

Peringkat akhir saluran paip data ialah kejuruteraan ciri.

Kejuruteraan Ciri

Kejuruteraan ciri menukar data mentah kepada ciri yang boleh digunakan sebagai input kepada model pembelajaran mesin. Ini melibatkan mengenal pasti dan mengekstrak data paling kritikal daripada bahan mentah dan menukarnya kepada format yang boleh digunakan oleh model. Kejuruteraan ciri adalah penting dalam pembelajaran mesin kerana ia boleh memberi kesan ketara kepada prestasi model.

Kejuruteraan ciri melibatkan:

Pengekstrakan ciri: mengekstrak maklumat yang berkaitan daripada data mentah. Contohnya, kenal pasti ciri yang paling penting atau gabungkan ciri sedia ada untuk mencipta ciri baharu.

Pengubahsuaian atribut: Tukar jenis atribut, seperti menukar pembolehubah kategori kepada pembolehubah berangka atau menskalakan data agar sesuai dengan julat tertentu.

Pemilihan Ciri: Tentukan ciri asas data untuk digunakan sebagai input kepada model pembelajaran mesin.

Pengurangan dimensi: Kurangkan bilangan ciri dalam pangkalan data dengan mengalih keluar ciri berlebihan atau tidak berkaitan.

Tambah Data: Tambahkan perubahan atau tindakan pada titik data sedia ada untuk mencipta yang baharu.

Kejuruteraan ciri memerlukan pemahaman yang baik tentang data, masalah yang perlu diselesaikan dan algoritma pembelajaran mesin yang akan digunakan. Proses ini adalah berulang dan percubaan, dan mungkin memerlukan berbilang lelaran untuk mencari set ciri optimum yang meningkatkan prestasi model.

Atas ialah kandungan terperinci Kepentingan memastikan kualiti data dalam pembelajaran mesin dan cara mengesahkannya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma