cari
RumahPeranti teknologiAIMemahami strategi, langkah, perbezaan dan konsep pembelajaran pemindahan

Memahami strategi, langkah, perbezaan dan konsep pembelajaran pemindahan

Pembelajaran pemindahan ialah kaedah yang menggunakan model terlatih dalam tugasan pembelajaran mesin sedia ada untuk menyelesaikan tugasan baharu. Ia boleh mengurangkan jumlah data latihan yang diperlukan untuk tugasan baharu dengan memindahkan pengetahuan model sedia ada kepada tugasan baharu. Dalam beberapa tahun kebelakangan ini, pembelajaran pemindahan telah digunakan secara meluas dalam bidang seperti pemprosesan bahasa semula jadi dan pengecaman imej. Artikel ini akan memperkenalkan konsep dan prinsip pembelajaran pemindahan secara terperinci.

Strategi Pembelajaran Pemindahan Klasik

Gunakan strategi dan teknik pembelajaran pemindahan yang berbeza berdasarkan domain tugasan dan ketersediaan data.

1. Pembelajaran pemindahan induktif

Pembelajaran pemindahan induktif memerlukan domain sumber dan domain sasaran adalah sama, walaupun tugas khusus yang dikendalikan oleh model adalah berbeza. Algoritma ini cuba mengeksploitasi pengetahuan model sumber dan menggunakannya untuk memperbaiki tugas sasaran. Model pra-latihan sudah mempunyai kepakaran dalam ciri domain, memberikan mereka titik permulaan yang lebih baik daripada melatih mereka dari awal.

Pembelajaran pemindahan induktif dibahagikan lagi kepada dua subkategori berdasarkan sama ada domain sumber mengandungi data berlabel. Ini termasuk pembelajaran pelbagai tugas dan pembelajaran kendiri masing-masing.

2. Pembelajaran pemindahan transduktif

Senario di mana bidang tugas sumber dan tugasan sasaran tidak betul-betul sama tetapi berkaitan antara satu sama lain, strategi pembelajaran pemindahan transduktif boleh digunakan. Seseorang boleh membuat persamaan antara tugas sumber dan sasaran. Senario ini biasanya mempunyai sejumlah besar data berlabel dalam domain sumber dan hanya data tidak berlabel dalam domain sasaran.

3. Pembelajaran pemindahan tanpa pengawasan

Pembelajaran pemindahan tanpa pengawasan adalah serupa dengan pembelajaran pemindahan induktif. Satu-satunya perbezaan ialah algoritma memfokuskan pada tugas tanpa pengawasan dan melibatkan set data tidak berlabel dalam kedua-dua tugas sumber dan sasaran.

4. Strategi berdasarkan persamaan domain dan bebas daripada jenis sampel data latihan

  • Pembelajaran pemindahan isomorfik

Kaedah pembelajaran pemindahan isomorfik yang sama dibangunkan dan dicadangkan dengan domain yang sama. keadaan angkasa lepas. Dalam pembelajaran pemindahan isomorfik, domain hanya berbeza sedikit dalam taburan marginalnya. Kaedah ini melaraskan domain dengan membetulkan bias pemilihan sampel atau anjakan kovariat.

  • Pembelajaran Pemindahan Heterogen

Kaedah pembelajaran pemindahan heterogen direka untuk menyelesaikan masalah domain sumber dan sasaran dengan ruang ciri yang berbeza serta isu lain seperti pengedaran data dan ruang label yang berbeza. Pembelajaran pemindahan heterogen digunakan untuk tugas merentas domain seperti klasifikasi teks merentas bahasa, klasifikasi teks ke imej, dsb.

6 langkah pembelajaran pemindahan

1. Dapatkan model pra-latihan

Langkah pertama ialah memilih model pra-latihan yang ingin kami simpan sebagai asas latihan kami mengikut tugasan . Memindahkan pembelajaran memerlukan korelasi yang kuat antara pengetahuan model sumber pra-latihan dan domain tugas sasaran agar serasi.

2. Cipta model asas

Model asas adalah untuk memilih seni bina yang berkait rapat dengan tugasan dalam langkah pertama dalam kes penggunaan kuantiti yang diperlukan. Dalam kes ini, lapisan keluaran akhir perlu dialih keluar dan diubah dengan sewajarnya.

3. Membekukan lapisan permulaan

Membekukan lapisan permulaan model pra-latihan adalah penting untuk mengelakkan model mempelajari ciri asas. Jika anda tidak membekukan lapisan awal, semua pembelajaran yang telah berlaku akan hilang. Ini tidak berbeza dengan melatih model dari awal, mengakibatkan masa terbuang, sumber, dsb.

4. Tambahkan lapisan baharu yang boleh dilatih

Satu-satunya pengetahuan yang digunakan semula daripada model asas ialah lapisan pengekstrakan ciri. Lapisan tambahan perlu ditambah di atas lapisan pengekstrakan ciri untuk meramalkan tugas khas model. Ini biasanya lapisan keluaran akhir.

5. Latih lapisan baharu

Besar kemungkinan keluaran akhir model pra-latihan akan berbeza daripada keluaran model yang kita inginkan, di mana lapisan keluaran baharu mesti digunakan untuk melatih model itu.

6. Perhalusi model

untuk meningkatkan prestasi model. Penalaan halus melibatkan penyahbekuan bahagian model asas dan melatih keseluruhan model sekali lagi pada keseluruhan set data pada kadar pembelajaran yang sangat rendah. Kadar pembelajaran yang rendah akan meningkatkan prestasi model pada set data baharu sambil mengelakkan pemasangan berlebihan.

Perbezaan antara pembelajaran mesin tradisional dan pembelajaran pemindahan

1. Model pembelajaran mesin tradisional perlu dilatih dari awal, yang memerlukan sejumlah besar pengiraan dan sejumlah besar data untuk mencapai prestasi tinggi. Pembelajaran pemindahan, sebaliknya, adalah cekap dari segi pengiraan dan membantu mencapai hasil yang lebih baik menggunakan set data yang kecil.

2. Pembelajaran mesin tradisional menggunakan kaedah latihan terpencil, dan setiap model dilatih secara bebas untuk tujuan tertentu dan tidak bergantung pada pengetahuan lepas. Sebaliknya, pembelajaran pemindahan menggunakan pengetahuan yang diperoleh daripada model pra-terlatih untuk mengendalikan tugas.

3 Model pembelajaran pemindahan mencapai prestasi optimum lebih cepat daripada model ML tradisional. Ini kerana model yang memanfaatkan pengetahuan (ciri, berat, dll.) daripada model yang dilatih sebelum ini sudah memahami ciri ini. Ia lebih pantas daripada melatih rangkaian saraf dari awal.

Konsep pembelajaran pemindahan mendalam

Banyak model rangkaian dan model saraf pra-latihan membentuk asas pembelajaran pemindahan dalam konteks pembelajaran mendalam, yang dipanggil pembelajaran pemindahan mendalam.

Untuk memahami proses model pembelajaran mendalam, adalah perlu untuk memahami komponennya. Sistem pembelajaran mendalam ialah seni bina berlapis yang boleh mempelajari ciri yang berbeza pada lapisan yang berbeza. Lapisan awal menyusun ciri peringkat lebih tinggi, yang disempitkan kepada ciri berbutir halus semasa kita pergi lebih dalam ke dalam rangkaian.

Lapisan ini akhirnya disambungkan ke lapisan terakhir untuk mendapatkan output akhir. Ini membuka had penggunaan rangkaian pra-latihan popular tanpa perlu menggunakan lapisan terakhirnya sebagai pengekstrak ciri tetap untuk tugasan lain. Idea utama ialah menggunakan lapisan wajaran model pra-latihan untuk mengekstrak ciri, tetapi tidak mengemas kini pemberat model semasa latihan dengan data baharu untuk tugasan baharu.

Rangkaian saraf dalam ialah struktur berlapis dengan banyak hiperparameter boleh laras. Peranan lapisan awal adalah untuk menangkap ciri generik, manakala lapisan kemudian lebih tertumpu pada tugas eksplisit yang ada. Adalah wajar untuk memperhalusi perwakilan ciri tertib lebih tinggi dalam model asas untuk menjadikannya lebih berkaitan dengan tugasan tertentu. Kami boleh melatih semula lapisan model tertentu sambil mengekalkan beberapa pembekuan dalam latihan.

Satu cara untuk meningkatkan lagi prestasi model adalah dengan melatih semula atau memperhalusi pemberat pada lapisan atas model pra-latihan sambil melatih pengelas. Ini memaksa pemberat dikemas kini daripada peta ciri biasa yang dipelajari daripada tugas sumber model. Penalaan halus akan membolehkan model menggunakan pengetahuan lepas dan mempelajari semula sesuatu dalam domain sasaran.

Selain itu, seseorang harus cuba memperhalusi beberapa lapisan atas dan bukannya keseluruhan model. Beberapa lapisan pertama mempelajari ciri umum asas yang boleh digeneralisasikan kepada hampir semua jenis data. Tujuan penalaan halus adalah untuk menyesuaikan ciri khusus ini kepada set data baharu, dan bukannya mengatasi pembelajaran umum.

Atas ialah kandungan terperinci Memahami strategi, langkah, perbezaan dan konsep pembelajaran pemindahan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:网易伏羲. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Panduan komprehensif untuk ekstrapolasiPanduan komprehensif untuk ekstrapolasiApr 15, 2025 am 11:38 AM

Pengenalan Katakan ada petani yang setiap hari memerhatikan kemajuan tanaman dalam beberapa minggu. Dia melihat kadar pertumbuhan dan mula merenungkan betapa lebih tinggi tumbuhannya dapat tumbuh dalam beberapa minggu lagi. Dari th

Kebangkitan AI lembut dan apa maksudnya untuk perniagaan hari iniKebangkitan AI lembut dan apa maksudnya untuk perniagaan hari iniApr 15, 2025 am 11:36 AM

Soft AI-yang ditakrifkan sebagai sistem AI yang direka untuk melaksanakan tugas-tugas tertentu yang sempit menggunakan penalaran, pengiktirafan corak, dan pengambilan keputusan yang fleksibel-bertujuan untuk meniru pemikiran seperti manusia dengan merangkul kekaburan. Tetapi apa maksudnya untuk busine

Rangka kerja keselamatan yang berkembang untuk sempadan AIRangka kerja keselamatan yang berkembang untuk sempadan AIApr 15, 2025 am 11:34 AM

Jawapannya jelas-seperti pengkomputeran awan memerlukan peralihan ke arah alat keselamatan awan asli, AI menuntut satu penyelesaian keselamatan baru yang direka khusus untuk keperluan unik AI. Kebangkitan pengkomputeran awan dan pelajaran keselamatan dipelajari Dalam th

3 cara AI Generatif menguatkan usahawan: berhati -hati dengan purata!3 cara AI Generatif menguatkan usahawan: berhati -hati dengan purata!Apr 15, 2025 am 11:33 AM

Usahawan dan menggunakan AI dan Generatif AI untuk menjadikan perniagaan mereka lebih baik. Pada masa yang sama, adalah penting untuk mengingati AI generatif, seperti semua teknologi, adalah penguat - menjadikan yang hebat dan yang biasa -biasa saja, lebih buruk. Kajian 2024 yang ketat o

Kursus Pendek Baru mengenai Model Embedding oleh Andrew NgKursus Pendek Baru mengenai Model Embedding oleh Andrew NgApr 15, 2025 am 11:32 AM

Buka kunci kekuatan model embedding: menyelam jauh ke kursus baru Andrew Ng Bayangkan masa depan di mana mesin memahami dan menjawab soalan anda dengan ketepatan yang sempurna. Ini bukan fiksyen sains; Terima kasih kepada kemajuan dalam AI, ia menjadi R

Adakah halusinasi dalam model bahasa besar (LLMS) tidak dapat dielakkan?Adakah halusinasi dalam model bahasa besar (LLMS) tidak dapat dielakkan?Apr 15, 2025 am 11:31 AM

Model bahasa besar (LLM) dan masalah halusinasi yang tidak dapat dielakkan Anda mungkin menggunakan model AI seperti ChatGPT, Claude, dan Gemini. Ini semua contoh model bahasa besar (LLM), sistem AI yang kuat yang dilatih dalam dataset teks besar -besaran ke

Masalah 60% - Bagaimana carian AI mengalir trafik andaMasalah 60% - Bagaimana carian AI mengalir trafik andaApr 15, 2025 am 11:28 AM

Penyelidikan baru-baru ini telah menunjukkan bahawa gambaran AI boleh menyebabkan penurunan 15-64% dalam trafik organik, berdasarkan jenis industri dan carian. Perubahan radikal ini menyebabkan pemasar untuk menimbang semula keseluruhan strategi mereka mengenai penglihatan digital. Yang baru

Makmal Media MIT untuk meletakkan manusia berkembang di tengah -tengah AI R & DMakmal Media MIT untuk meletakkan manusia berkembang di tengah -tengah AI R & DApr 15, 2025 am 11:26 AM

Laporan baru -baru ini dari Elon University Imagining the Digital Future Centre meninjau hampir 300 pakar teknologi global. Laporan yang dihasilkan, 'Menjadi Manusia pada tahun 2035', menyimpulkan bahawa kebanyakannya bimbang bahawa penggunaan sistem AI yang mendalam lebih daripada t

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Arahan sembang dan cara menggunakannya
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft