Rumah > Artikel > pangkalan data > Penjelasan terperinci tentang operasi pemadaman B-tree: Ilustrasi terperinci operasi pemadaman B-tree menggunakan Python
Operasi pemadaman B-tree perlu mengambil kira lokasi dan keseimbangan nod, dan aliran bawah berkemungkinan berlaku. Aliran bawah berlaku apabila nod mengandungi kurang daripada bilangan minimum nod anak yang sepatutnya dipegangnya.
tanpa menjejaskan keseimbangan.
Situasi aliran bawah.
Padamkan nod dalaman.
# B树节点 class BTreeNode: def __init__(self, leaf=False): self.leaf = leaf self.keys = [] self.child = [] class BTree: def __init__(self, t): self.root = BTreeNode(True) self.t = t # 插入元素 def insert(self, k): root = self.root if len(root.keys) == (2 * self.t) - 1: temp = BTreeNode() self.root = temp temp.child.insert(0, root) self.split_child(temp, 0) self.insert_non_full(temp, k) else: self.insert_non_full(root, k) def insert_non_full(self, x, k): i = len(x.keys) - 1 if x.leaf: x.keys.append((None, None)) while i >= 0 and k[0] < x.keys[i][0]: x.keys[i + 1] = x.keys[i] i -= 1 x.keys[i + 1] = k else: while i >= 0 and k[0] < x.keys[i][0]: i -= 1 i += 1 if len(x.child[i].keys) == (2 * self.t) - 1: self.split_child(x, i) if k[0] > x.keys[i][0]: i += 1 self.insert_non_full(x.child[i], k) # 分开子节点 def split_child(self, x, i): t = self.t y = x.child[i] z = BTreeNode(y.leaf) x.child.insert(i + 1, z) x.keys.insert(i, y.keys[t - 1]) z.keys = y.keys[t: (2 * t) - 1] y.keys = y.keys[0: t - 1] if not y.leaf: z.child = y.child[t: 2 * t] y.child = y.child[0: t - 1] # 删除节点 def delete(self, x, k): t = self.t i = 0 while i < len(x.keys) and k[0] > x.keys[i][0]: i += 1 if x.leaf: if i < len(x.keys) and x.keys[i][0] == k[0]: x.keys.pop(i) return return if i < len(x.keys) and x.keys[i][0] == k[0]: return self.delete_internal_node(x, k, i) elif len(x.child[i].keys) >= t: self.delete(x.child[i], k) else: if i != 0 and i + 2 < len(x.child): if len(x.child[i - 1].keys) >= t: self.delete_sibling(x, i, i - 1) elif len(x.child[i + 1].keys) >= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i == 0: if len(x.child[i + 1].keys) >= t: self.delete_sibling(x, i, i + 1) else: self.delete_merge(x, i, i + 1) elif i + 1 == len(x.child): if len(x.child[i - 1].keys) >= t: self.delete_sibling(x, i, i - 1) else: self.delete_merge(x, i, i - 1) self.delete(x.child[i], k) # 删除节点 def delete_internal_node(self, x, k, i): t = self.t if x.leaf: if x.keys[i][0] == k[0]: x.keys.pop(i) return return if len(x.child[i].keys) >= t: x.keys[i] = self.delete_predecessor(x.child[i]) return elif len(x.child[i + 1].keys) >= t: x.keys[i] = self.delete_successor(x.child[i + 1]) return else: self.delete_merge(x, i, i + 1) self.delete_internal_node(x.child[i], k, self.t - 1) # 删除前节点 def delete_predecessor(self, x): if x.leaf: return x.pop() n = len(x.keys) - 1 if len(x.child[n].keys) >= self.t: self.delete_sibling(x, n + 1, n) else: self.delete_merge(x, n, n + 1) self.delete_predecessor(x.child[n]) # 删除继任节点 def delete_successor(self, x): if x.leaf: return x.keys.pop(0) if len(x.child[1].keys) >= self.t: self.delete_sibling(x, 0, 1) else: self.delete_merge(x, 0, 1) self.delete_successor(x.child[0]) def delete_merge(self, x, i, j): cnode = x.child[i] if j > i: rsnode = x.child[j] cnode.keys.append(x.keys[i]) for k in range(len(rsnode.keys)): cnode.keys.append(rsnode.keys[k]) if len(rsnode.child) > 0: cnode.child.append(rsnode.child[k]) if len(rsnode.child) > 0: cnode.child.append(rsnode.child.pop()) new = cnode x.keys.pop(i) x.child.pop(j) else: lsnode = x.child[j] lsnode.keys.append(x.keys[j]) for i in range(len(cnode.keys)): lsnode.keys.append(cnode.keys[i]) if len(lsnode.child) > 0: lsnode.child.append(cnode.child[i]) if len(lsnode.child) > 0: lsnode.child.append(cnode.child.pop()) new = lsnode x.keys.pop(j) x.child.pop(i) if x == self.root and len(x.keys) == 0: self.root = new # 删除同一级的其他子节点 def delete_sibling(self, x, i, j): cnode = x.child[i] if i < j: rsnode = x.child[j] cnode.keys.append(x.keys[i]) x.keys[i] = rsnode.keys[0] if len(rsnode.child) > 0: cnode.child.append(rsnode.child[0]) rsnode.child.pop(0) rsnode.keys.pop(0) else: lsnode = x.child[j] cnode.keys.insert(0, x.keys[i - 1]) x.keys[i - 1] = lsnode.keys.pop() if len(lsnode.child) > 0: cnode.child.insert(0, lsnode.child.pop()) # 输出B树 def print_tree(self, x, l=0): print("Level ", l, " ", len(x.keys), end=":") for i in x.keys: print(i, end=" ") print() l += 1 if len(x.child) > 0: for i in x.child: self.print_tree(i, l) B = BTree(3) for i in range(10): B.insert((i, 2 * i)) B.print_tree(B.root) B.delete(B.root, (8,)) print("\n") B.print_tree(B.root)
Atas ialah kandungan terperinci Penjelasan terperinci tentang operasi pemadaman B-tree: Ilustrasi terperinci operasi pemadaman B-tree menggunakan Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!