Rumah >pangkalan data >tutorial mysql >mysql慢日志分析工具pt-query-digest_MySQL

mysql慢日志分析工具pt-query-digest_MySQL

WBOY
WBOYasal
2016-06-01 12:58:361390semak imbas

之前windows下mysql5.6.20使用mysqldumpslow.pl分析慢日志,今天又看到一个工具pt-query-digest,原本打算在windows上安装使用,结果在windows上执行C:\Program Files\MySQL\MySQL Server 5.6\bin>pt-query-digest.pl F:\mysql\im-slow.log > F:\mysql\slow_report.log,等了半小时都出不来结果。想必是不怎么支持windows吧,那就一心一意用linux吧。

1. 先安装perl, 登录 https://www.perl.org/get.html ,我选择的是最新版。

解压后来到perl的安装目录执行

[root@VM-10 perl-5.22.0]# ./Configure -des -Dprefix=/usr/perl-5.22.0 -Dusethreads -Uversiononly

验证是否安装成功

[root@VM-10 perl-5.22.0]# perl -version
This is perl, v5.10.1 (*) built for x86_64-linux-thread-multi
Copyright 1987-2009, Larry Wall
Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.
Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

2.下载pt-query-digest,https://www.percona.com/downloads/percona-toolkit/,下载percona-toolkit_2.2.14.tar.gz 。

tar zxvf 解压后,来到安装目录下/data/percona-toolkit-2.2.14执行
[root@VM-10 perl-5.22.0]# perl Makefile.PL
[root@VM-10 perl-5.22.0]# make
[root@VM-10 perl-5.22.0]# make install

3.pt-query-digest /data/im-slow.log > /data/slow_report.log ,相比windows半天出不来,这个结果几乎秒出。

 

Overall: 总共有多少条查询,上例为总共266个查询。
Time range: 查询执行的时间范围。
unique: 唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询,该例为55。

 

# 34.3s user time, 310ms system time, 44.95M rss, 196.52M vsz
# Current date: Thu Aug 13 10:51:55 2015
# Hostname: VM-10.10.X.X
# Files: /data/im-slow.log
# Overall: 64.10k total, 179 unique, 0.00 QPS, 0.10x concurrency _________
# Time range: 2015-02-08 06:52:36 to 2015-07-29 09:02:02
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 1405895s 5s 4899s 22s 32s 111s 10s
# Lock time 62995s 0 2476s 983ms 1ms 48s 144us
# Rows sent 5.69G 0 44.43M 93.04k 5.75 1.34M 0.99
# Rows examine 13.96G 0 693.12M 228.36k 44.45k 3.49M 0.99
# Query size 37.30M 6 335.57k 610.11 918.49 6.98k 537.02


# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ================= ===== ========= ===== ========
# 1 0x0F2E6B958872280E 274452.3245 19.5% 26566 10.3310 2.39 SELECT gg_token gg_tenant
# 2 0x816F5D9DB1BD38C7 246396.5092 17.5% 15295 16.1096 31... INSERT gg_login_history
# 3 0xA3267D6CEFA1D5E3 203446.8729 14.5% 100 2034.4687 13... SELECT gg_token gg_login_history
# 4 0x67A347A2812914DF 170491.0463 12.1% 972 175.4023 44... SELECT app_chat_message
# 5 0x8BACA5842B7A7490 95999.5908 6.8% 5737 16.7334 37... INSERT app_offline_message
# 6 0x2B874BB5CB81DC1F 68234.7809 4.9% 105 649.8551 87.61 SELECT gg_token gg_login_history
# 7 0x848218FE4D9F7651 51218.6838 3.6% 210 243.8985 12.52 SELECT gg_token
# 8 0xBF9265005D4F8D80 40299.7591 2.9% 78 516.6636 28... SELECT gg_login_history gg_user gg_user_org gg_org
# 9 0xDCDBC481602798A4 39449.2606 2.8% 3193 12.3549 4.68 SELECT gg_token


Databases: 库名
Users: 各个用户执行的次数(占比)
Query_time distribution : 查询时间分布, 长短体现区间占比
Tables: 查询中涉及到的表
Explain: 示例

# Query 1: 0.03 QPS, 0.30x concurrency, ID 0x0F2E6B958872280E at byte 28156661
# This item is included in the report because it matches --limit.
# Scores: V/M = 2.39
# Time range: 2015-06-16 00:05:14 to 2015-06-26 11:33:23
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 41 26566
# Exec time 19 274452s 5s 54s 10s 12s 5s 10s
# Lock time 0 24s 64us 40ms 885us 1ms 738us 839us
# Rows sent 0 80.00k 0 13 3.08 4.96 1.29 2.90
# Rows examine 8 1.15G 44.73k 45.59k 45.43k 44.45k 0 44.45k
# Query size 36 13.78M 542 544 543.73 537.02 0 537.02
# String:
# Databases im
# Hosts 10.100.252.38 (13301/50%)... 1 more
# Users im
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s ########################################################
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `im` LIKE 'gg_token'\G
# SHOW CREATE TABLE `im`.`gg_token`\G
# SHOW TABLE STATUS FROM `im` LIKE 'gg_tenant'\G
# SHOW CREATE TABLE `im`.`gg_tenant`\G
# EXPLAIN /*!50100 PARTITIONS*/
select token0_.token_id as token_id1_119_, token0_.tenant_id as tenant_10_119_, token0_.account as account2_119_, token0_.client_id as client_i3_119_, token0_.create_date as create_d4_119_, token0_.host as host5_119_, token0_.last_auth_date as last_aut6_119_, token0_.session_id as session_7_119_, token0_.token as token8_119_, token0_.user_id as user_id9_119_ from gg_token token0_ left outer join gg_tenant tenant1_ on token0_.tenant_id=tenant1_.tenant_id where token0_.user_id='00014806a5a95f25ab' and tenant1_.tenant_id='0001456d92804b00'\G


# Query 2: 0.00 QPS, 0.02x concurrency, ID 0x816F5D9DB1BD38C7 at byte 17658778
# This item is included in the report because it matches --limit.
# Scores: V/M = 314.49
# Time range: 2015-03-21 13:31:25 to 2015-07-18 15:11:32
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 23 15295
# Exec time 17 246397s 5s 2498s 16s 32s 71s 11s
# Lock time 51 32142s 0 2476s 2s 125us 71s 89us
# Rows sent 0 0 0 0 0 0 0 0
# Rows examine 0 0 0 0 0 0 0 0
# Query size 9 3.55M 221 258 243.36 246.02 7.37 234.30
# String:
# Databases im
# Hosts 10.101.252.35 (7709/50%)... 3 more
# Users im
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s #############################################
# 10s+ ################################################################
# Tables
# SHOW TABLE STATUS FROM `im` LIKE 'gg_login_history'\G
# SHOW CREATE TABLE `im`.`gg_login_history`\G
INSERT INTO gg_login_history(login_history_id,username,resource,clientId,login_time,logout_time) VALUES('930e0b3e-d26b-4cc3-a02f-be0b1009744c','000148b62c6a6e290','Android','354273054207050','2015-04-13 23:04:42','2015-04-13 23:07:46')\G

最常用的使用方法:

(1)直接分析慢查询文件:
pt-query-digest slow.log > slow_report.log
(2)分析最近1小时内的查询:
pt-query-digest --since=1h slow.log > slow_report.log
(3)分析指定时间范围内的查询:
pt-query-digest slow.log --since '2015-04-17 10:30:00' --until '2015-04-17 18:00:00'>slow_report.log
(4)分析指含有select语句的慢查询
pt-query-digest--filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report.log
(5) 查询所有所有的全表扫描或full join的慢查询
pt-query-digest--filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report.log

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn