


Cara melaksanakan sistem pengesyoran dan pengesyoran diperibadikan dalam uniapp
Cara melaksanakan sistem pengesyoran dan pengesyoran diperibadikan dalam UniApp
Sistem pengesyoran digunakan secara meluas dalam aplikasi Internet moden, termasuk pengesyoran pemperibadian. Sebagai rangka kerja pembangunan aplikasi mudah alih merentas platform, UniApp juga boleh melaksanakan sistem pengesyoran dan fungsi pengesyoran yang diperibadikan. Artikel ini akan memperkenalkan secara terperinci cara melaksanakan sistem pengesyoran dan pengesyoran diperibadikan dalam UniApp, dan memberikan contoh kod khusus.
Sistem pengesyoran ialah bahagian penting dalam menyediakan perkhidmatan yang diperibadikan kepada pengguna. Ia boleh memberikan pengguna kandungan yang menarik atau mengesyorkan produk berkaitan berdasarkan gelagat sejarah pengguna, potret pengguna dan maklumat lain. Untuk melaksanakan sistem pengesyoran dalam UniApp, kami perlu melengkapkan langkah berikut:
- Pengumpulan dan pemprosesan data
Pertama, kami perlu mengumpul dan memproses sejarah tingkah laku dan pengguna pengguna data potret. Langkah ini boleh diselesaikan dengan menyambung ke platform analisis statistik pihak ketiga atau membina perkhidmatan pengumpulan data yang dibina sendiri. Data yang dikumpul boleh termasuk sejarah penyemakan imbas pengguna, suka dan gelagat koleksi, rekod pembelian dan maklumat lain. Pada masa yang sama, ia juga perlu untuk membina potret pengguna, termasuk tag minat pengguna, lokasi geografi, jantina dan maklumat lain. - Penyimpanan dan Pengurusan Data
Simpan data yang dikumpul dalam pangkalan data. UniApp menyokong pelbagai pangkalan data, seperti MongoDB, SQLite, dll. Anda boleh memilih pangkalan data yang sesuai mengikut situasi sebenar dan mewujudkan struktur jadual yang sepadan untuk menyimpan data pengguna. - Reka bentuk algoritma pengesyoran
Algoritma pengesyoran ialah teras sistem pengesyoran. UniApp menyediakan keupayaan pembangunan bahagian hadapan yang kaya dan boleh terus menggunakan algoritma pengesyoran biasa untuk pelaksanaan bahagian hadapan. Algoritma pengesyoran biasa termasuk algoritma pengesyoran berasaskan penapisan kolaboratif, algoritma pengesyoran berasaskan kandungan, algoritma pengesyoran berasaskan pembelajaran mendalam, dsb. Pilih algoritma pengesyoran yang sesuai dan hitung hasil pengesyoran berdasarkan gelagat sejarah pengguna dan potret pengguna.
Berikut ialah contoh kod algoritma pengesyoran berdasarkan penapisan kolaboratif:
// 用户与物品的评分矩阵 const userItemMatrix = [ [5, 4, 0, 0, 1], [0, 3, 1, 2, 0], [1, 0, 3, 0, 4], [0, 0, 4, 3, 5], [2, 1, 0, 5, 0] ]; // 计算用户之间的相似度 function getSimilarity(user1, user2) { let similarity = 0; let count = 0; for (let i = 0; i < user1.length; i++) { if (user1[i] !== 0 && user2[i] !== 0) { similarity += Math.pow(user1[i] - user2[i], 2); count++; } } return count > 0 ? Math.sqrt(similarity / count) : 0; } // 获取与目标用户最相似的用户 function getMostSimilarUser(targetUser, users) { let maxSimilarity = 0; let mostSimilarUser = null; for (let user of users) { const similarity = getSimilarity(targetUser, user); if (similarity > maxSimilarity) { maxSimilarity = similarity; mostSimilarUser = user; } } return mostSimilarUser; } // 获取推荐结果 function getRecommendations(targetUser, users, items) { const mostSimilarUser = getMostSimilarUser(targetUser, users); const recommendations = []; for (let i = 0; i < targetUser.length; i++) { if (targetUser[i] === 0 && mostSimilarUser[i] > 0) { recommendations.push(items[i]); } } return recommendations; } // 测试推荐结果 const targetUser = [0, 0, 0, 0, 0]; const users = [ [5, 4, 0, 0, 1], [0, 3, 1, 2, 0], [1, 0, 3, 0, 4], [0, 0, 4, 3, 5], [2, 1, 0, 5, 0] ]; const items = ['item1', 'item2', 'item3', 'item4', 'item5']; const recommendations = getRecommendations(targetUser, users, items); console.log(recommendations);
- Paparan dan interaksi hadapan#🎜🎜 Akhir sekali, pengiraan Keputusan yang disyorkan dipaparkan kepada pengguna. UniApp menyediakan pelbagai komponen UI dan fungsi interaktif yang boleh disesuaikan mengikut keperluan sebenar. Hasil yang disyorkan boleh dipaparkan pada halaman utama atau halaman cadangan aplikasi dan pengguna boleh berinteraksi dengan mereka melalui klik, slaid, dsb.
Atas ialah kandungan terperinci Cara melaksanakan sistem pengesyoran dan pengesyoran diperibadikan dalam uniapp. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini
