cari
Rumahpembangunan bahagian belakangTutorial PythonAmalan terbaik dan pilihan algoritma untuk cara mengendalikan dan mengisi data yang hilang dalam Python

Amalan terbaik dan pilihan algoritma untuk cara mengendalikan dan mengisi data yang hilang dalam Python

Amalan terbaik dan pemilihan algoritma untuk cara mengendalikan dan mengisi data yang hilang dalam Python

Pengenalan

Nilai yang hilang sering ditemui dalam analisis data. Kehadiran nilai yang hilang mungkin menjejaskan keputusan analisis data dan latihan model. Oleh itu, pemprosesan dan pengisian nilai yang hilang telah menjadi bahagian penting dalam analisis data. Artikel ini akan memperkenalkan amalan terbaik dan pilihan algoritma untuk mengendalikan dan mengisi data yang hilang dalam Python, dan memberikan contoh kod khusus.

Kaedah biasa untuk mengendalikan nilai yang hilang dalam data

Padamkan nilai yang hilang

Cara paling mudah untuk menangani nilai yang hilang adalah dengan memadamkan terus baris atau lajur dengan nilai yang hilang. Kaedah ini selalunya sesuai apabila perkadaran nilai yang hilang adalah kecil. Dalam Python, anda boleh menggunakan kaedah dropna() untuk mengalih keluar nilai yang hilang. dropna()方法来删除缺失值。

import pandas as pd

# 删除含有缺失值的行
df_dropna = df.dropna()

# 删除含有缺失值的列
df_dropna = df.dropna(axis=1)

插值方法

插值方法是一种常用的填充缺失值的方法,它基于已有的数据来估计缺失值。Python提供了多种插值方法,常用的有线性插值、多项式插值和样条插值。

线性插值

线性插值是一种简单有效的缺失值填充方法,它使用已有的数据点和线性关系来估计缺失值。在Python中,可以使用interpolate()方法来进行线性插值。

import pandas as pd

# 线性插值填充缺失值
df_interpolate = df.interpolate()

多项式插值

多项式插值是一种基于多项式拟合的缺失值填充方法,它可以更好地估计非线性关系的缺失值。在Python中,可以使用polyfit()方法来进行多项式插值。

import pandas as pd
import numpy as np

# 多项式插值填充缺失值
df_polyfit = df.interpolate(method='polynomial', order=3)

样条插值

样条插值是一种通过拟合曲线来填充缺失值的方法,它可以更好地估计复杂的非线性关系。在Python中,可以使用interpolate()方法并指定method='spline'来进行样条插值。

import pandas as pd

# 样条插值填充缺失值
df_spline = df.interpolate(method='spline', order=3)

均值、中位数或众数填充

对于数值型数据,常用的填充缺失值的方法是使用均值、中位数或众数。在Python中,可以使用fillna()

import pandas as pd

# 使用均值填充缺失值
mean_value = df.mean()
df_fillna = df.fillna(mean_value)

Kaedah interpolasi

Kaedah interpolasi adalah kaedah yang biasa digunakan untuk mengisi nilai yang hilang berdasarkan data sedia ada. Python menyediakan pelbagai kaedah interpolasi, yang biasa digunakan ialah interpolasi linear, interpolasi polinomial dan interpolasi spline.

Interpolasi linear

Interpolasi linear ialah kaedah pengisian nilai hilang yang mudah dan berkesan yang menggunakan titik data sedia ada dan hubungan linear untuk menganggar nilai yang hilang. Dalam Python, anda boleh menggunakan kaedah interpolate() untuk melakukan interpolasi linear.

import pandas as pd

# 使用中位数填充缺失值
median_value = df.median()
df_fillna = df.fillna(median_value)

Interpolasi polinomial

Interpolasi polinomial ialah kaedah pengisian nilai yang hilang berdasarkan padanan polinomial, yang boleh menganggarkan nilai yang hilang bagi perhubungan bukan linear dengan lebih baik. Dalam Python, anda boleh menggunakan kaedah polyfit() untuk melakukan interpolasi polinomial.

import pandas as pd

# 使用众数填充缺失值
mode_value = df.mode().iloc[0]
df_fillna = df.fillna(mode_value)

Interpolasi spline

Interpolasi spline ialah kaedah mengisi nilai yang hilang dengan memasang lengkung, yang boleh menganggarkan hubungan bukan linear yang kompleks dengan lebih baik. Dalam Python, anda boleh menggunakan kaedah interpolate() dan tentukan method='spline' untuk melakukan interpolasi spline.

from sklearn.metrics import mean_squared_error, mean_absolute_error

# 计算均方误差
mse = mean_squared_error(df_true, df_fillna)

# 计算平均绝对误差
mae = mean_absolute_error(df_true, df_fillna)

Pengisian Min, Median atau Mod

Untuk data berangka, cara biasa untuk mengisi nilai yang tiada adalah dengan menggunakan min, median atau mod. Dalam Python, anda boleh menggunakan kaedah fillna() untuk mengisi.

Pengisian min🎜🎜Menggunakan min untuk mengisi nilai yang hilang adalah kaedah yang mudah dan berkesan yang boleh mengekalkan ciri pengedaran data keseluruhan. 🎜rrreee🎜Pengisian median🎜🎜Menggunakan median untuk mengisi nilai yang hilang sesuai untuk situasi di mana terdapat banyak outlier dalam data Ia boleh mengurangkan kesan outlier. 🎜rrreee🎜Pengisian mod🎜🎜Menggunakan mod untuk mengisi nilai yang hilang sesuai untuk data diskret, ia boleh mengekalkan ciri pengedaran keseluruhan data. 🎜rrreee🎜Pemilihan dan Penilaian Algoritma🎜🎜Apabila memilih dan menggunakan kaedah untuk pemprosesan dan pengisian nilai yang hilang, anda perlu memilih kaedah yang sesuai berdasarkan jenis data, pengagihan nilai yang hilang, dan keperluan masalah. Pada masa yang sama, data yang diisi juga perlu dinilai. Penunjuk penilaian yang biasa digunakan termasuk ralat min kuasa dua (MSE) dan ralat mutlak min (MAE). 🎜rrreee🎜Kesimpulan🎜🎜Dalam analisis data, pemprosesan dan pengisian nilai data yang hilang adalah langkah penting dan perlu. Artikel ini menerangkan amalan terbaik dan pilihan algoritma untuk mengendalikan dan mengimput data yang hilang dalam Python, dan menyediakan contoh kod khusus. Berdasarkan keperluan masalah sebenar, anda boleh memilih kaedah yang sesuai untuk memproses dan mengisi nilai yang hilang, dan menilai data yang diisi. Ini boleh meningkatkan ketepatan dan keberkesanan analisis data dan latihan model. 🎜

Atas ialah kandungan terperinci Amalan terbaik dan pilihan algoritma untuk cara mengendalikan dan mengisi data yang hilang dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Apakah beberapa operasi biasa yang boleh dilakukan pada tatasusunan python?Apakah beberapa operasi biasa yang boleh dilakukan pada tatasusunan python?Apr 26, 2025 am 12:22 AM

PythonArraysSupportVariousoperations: 1) SlicingExtractsSubsets, 2) Menambah/ExtendingAddSelements, 3) InsertingPlaceSelementSatSatSatSpecifics, 4) RemovingDeleteselements, 5) Sorting/ReversingChangesOrder,

Dalam jenis aplikasi yang biasa digunakan oleh numpy?Dalam jenis aplikasi yang biasa digunakan oleh numpy?Apr 26, 2025 am 12:13 AM

NumpyarraysareessentialforapplicationRequiringeficientnumericalcomputationsanddatamanipulation.theyarecrucialindaSascience, machinelearning, fizik, kejuruteraan, danfinanceduetotheirabilitytOHandlelarge-Scaledataefisien.Forexample, infinancialanal

Bilakah anda memilih untuk menggunakan array di atas senarai di Python?Bilakah anda memilih untuk menggunakan array di atas senarai di Python?Apr 26, 2025 am 12:12 AM

UseanArray.arrayoveralistinpythonwhendealingwithhomogeneousdata, criticalcode prestasi, orinterfacingwithccode.1) homogeneousdata: arrayssavemememorywithtypedelements.2)

Adakah semua operasi senarai disokong oleh tatasusunan, dan sebaliknya? Mengapa atau mengapa tidak?Adakah semua operasi senarai disokong oleh tatasusunan, dan sebaliknya? Mengapa atau mengapa tidak?Apr 26, 2025 am 12:05 AM

Tidak, notalllistoperationsaresuportedByArrays, andviceversa.1) arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing, whyimpactsperformance.2) listsdonotguaranteeconstantTimeComplexityFordirectacesscesscesscesscesscesscesscesscesscesessd.

Bagaimana anda mengakses elemen dalam senarai python?Bagaimana anda mengakses elemen dalam senarai python?Apr 26, 2025 am 12:03 AM

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Apr 25, 2025 am 12:28 AM

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Apr 25, 2025 am 12:24 AM

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini