Masalah ketekalan sempadan dalam pembahagian semantik imej
Segmentasi semantik imej ialah salah satu tugas penting dalam bidang penglihatan komputer, yang matlamatnya adalah untuk melabelkan setiap piksel dalam imej sebagai kategori semantik yang berbeza. Ketekalan sempadan ialah isu utama dalam pembahagian semantik imej, iaitu, memastikan sempadan objek dalam hasil pembahagian adalah jelas dan tepat.
Dalam segmentasi semantik imej, kaedah biasa ialah menggunakan rangkaian saraf konvolusi (Convolutional Neural Networks, CNN) untuk mengekstrak dan mengklasifikasikan imej. Walau bagaimanapun, disebabkan oleh ciri-ciri CNN, masalah sempadan kabur dalam keputusan segmentasi terdedah kepada berlaku. Ini disebabkan terutamanya oleh fakta bahawa operasi lilitan dan penggabungan CNN boleh menyebabkan kehilangan penyelesaian dan maklumat yang kabur.
Untuk menyelesaikan masalah konsistensi sempadan, penyelidik telah mencadangkan banyak kaedah. Dua kaedah yang biasa digunakan akan diperkenalkan di bawah dan contoh kod khusus akan diberikan.
- Medan Rawak Bersyarat (CRF): CRF ialah model graf kebarangkalian yang boleh memproses pasca hasil pembahagian semantik imej untuk meningkatkan ketekalan sempadan. CRF memfokuskan pada hubungan antara piksel dan mempertimbangkan maklumat kontekstual piksel. Kaedah pasca pemprosesan biasa untuk CRF ialah menggunakan fungsi potensi Gaussian dan istilah melicinkan untuk mengoptimumkan hasil pembahagian. Berikut ialah contoh kod menggunakan CRF untuk pemprosesan pasca:
import numpy as np from pydensecrf import densecrf def crf_postprocessing(image, probabilities): # 定义CRF对象 crf = densecrf.DenseCRF2D(image.shape[1], image.shape[0], num_classes) # 定义unary potentials(输入的概率图) U = -np.log(probabilities) U = U.reshape((num_classes, -1)) # 添加unary potentials到CRF中 crf.setUnaryEnergy(U) # 定义高斯势函数 crf.addPairwiseGaussian(sxy=(3, 3), compat=3) # 进行推理和优化 Q = crf.inference(5) Q = np.array(Q).reshape((num_classes, image.shape[0], image.shape[1])) # 返回优化后的结果 return np.argmax(Q, axis=0) # 调用CRF后处理 output = crf_postprocessing(image, probabilities)
- Gabungan maklumat berbilang skala: Ciri berbilang skala boleh memberikan lebih banyak maklumat kontekstual dan membantu membahagikan sempadan objek dengan tepat. Kaedah gabungan berbilang skala yang biasa digunakan adalah untuk menggabungkan peta ciri skala yang berbeza dan mengklasifikasikan hasil gabungan. Berikut ialah kod sampel menggunakan gabungan berbilang skala:
from torchvision.models import segmentation def multiscale_fusion(image): # 定义模型(使用DeepLabv3+) model = segmentation.deeplabv3_resnet50(pretrained=True) # 定义不同尺度的输入大小 input_size = [(256, 256), (512, 512), (1024, 1024)] # 定义不同尺度的输出结果 outputs = [] # 对每个尺度进行预测 for size in input_size: # 调整输入图像大小 resized_image = resize(image, size) # 进行预测 output = model(resized_image) output = output['out'] # 将预测结果调整回原始大小 output = resize(output, (image.shape[0], image.shape[1])) # 添加到输出结果中 outputs.append(output) # 融合不同尺度的输出结果 fused_output = np.mean(outputs, axis=0) # 对融合结果进行分类 segmentation_map = np.argmax(fused_output, axis=0) # 返回分割结果 return segmentation_map # 调用多尺度融合 output = multiscale_fusion(image)
Ringkasnya, ketekalan sempadan ialah isu penting dalam pembahagian semantik imej, dan beberapa teknologi dan kaedah khusus perlu diperkenalkan semasa memproses pembahagian semantik imej. Artikel ini memperkenalkan dua kaedah CRF pasca pemprosesan dan gabungan berbilang skala yang biasa digunakan, dan memberikan contoh kod khusus. Kaedah ini boleh membantu meningkatkan ketepatan hasil pembahagian dan kejelasan sempadan, yang sangat penting untuk tugas pembahagian semantik imej.
Atas ialah kandungan terperinci Masalah ketekalan sempadan dalam pembahagian semantik imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memeluk Olimpikcoder-7B: Model Penaakulan Kod Terbuka Sumber Terbuka yang kuat Perlumbaan untuk membangunkan model bahasa yang tertumpu kepada kod unggul semakin meningkat, dan Hugging Face telah menyertai pertandingan dengan pesaing yang hebat: Olympiccoder-7b, produk

Berapa banyak daripada anda yang berharap AI dapat melakukan lebih daripada sekadar menjawab soalan? Saya tahu saya ada, dan sejak kebelakangan ini, saya kagum dengan bagaimana ia berubah. AI Chatbots bukan sekadar berbual lagi, mereka sedang membuat, Researchin

Oleh kerana Smart AI mula diintegrasikan ke dalam semua peringkat platform dan aplikasi perisian perusahaan (kita harus menekankan bahawa terdapat kedua -dua alat teras yang kuat dan beberapa alat simulasi yang kurang dipercayai), kita memerlukan satu set baru keupayaan infrastruktur untuk menguruskan agen -agen ini. Camunda, sebuah syarikat orkestrasi proses yang berpusat di Berlin, Jerman, percaya ia dapat membantu Smart AI memainkan peranannya yang sewajarnya dan selaras dengan matlamat dan peraturan perniagaan yang tepat di tempat kerja digital yang baru. Syarikat ini kini menawarkan keupayaan orkestra pintar yang direka untuk membantu model organisasi, menggunakan dan mengurus ejen AI. Dari perspektif kejuruteraan perisian praktikal, apakah maksudnya? Integrasi proses kepastian dan bukan deterministik Syarikat itu mengatakan yang penting adalah untuk membolehkan pengguna (biasanya saintis data, perisian)

Menghadiri Google Cloud Seterusnya '25, saya berminat untuk melihat bagaimana Google akan membezakan tawaran AInya. Pengumuman baru -baru ini mengenai Agentspace (dibincangkan di sini) dan Suite Pengalaman Pelanggan (dibincangkan di sini) menjanjikan, menekankan perniagaan Valu

Memilih model penyembuhan berbilang bahasa yang optimum untuk sistem pengambilan semula (RAG) pengambilan anda Di dunia yang saling berkaitan hari ini, membina sistem AI berbilang bahasa yang berkesan adalah yang paling utama. Model penyembuhan berbilang bahasa yang teguh adalah penting untuk Re

Pelancaran Austin Robotaxi Tesla: Melihat lebih dekat dengan tuntutan Musk Elon Musk baru-baru ini mengumumkan pelancaran Robotaxi yang akan datang di Tesla di Austin, Texas, pada mulanya mengerahkan armada kecil 10-20 kenderaan untuk alasan keselamatan, dengan rancangan untuk pengembangan pesat. H

Cara kecerdasan buatan digunakan mungkin tidak dijangka. Pada mulanya, ramai di antara kita mungkin berfikir ia digunakan terutamanya untuk tugas kreatif dan teknikal, seperti menulis kod dan membuat kandungan. Walau bagaimanapun, satu tinjauan baru -baru ini yang dilaporkan oleh Harvard Business Review menunjukkan bahawa ini tidak berlaku. Kebanyakan pengguna mencari kecerdasan buatan bukan hanya untuk kerja, tetapi untuk sokongan, organisasi, dan juga persahabatan! Laporan itu mengatakan bahawa kes permohonan AI yang pertama adalah rawatan dan persahabatan. Ini menunjukkan bahawa ketersediaan 24/7 dan keupayaan untuk memberikan nasihat dan maklum balas yang jujur, jujur adalah nilai yang sangat baik. Sebaliknya, tugas pemasaran (seperti menulis blog, mewujudkan jawatan media sosial, atau salinan pengiklanan) yang lebih rendah pada senarai penggunaan popular. Mengapa ini? Mari kita lihat hasil penyelidikan dan bagaimana ia terus menjadi

Kebangkitan agen AI mengubah landskap perniagaan. Berbanding dengan revolusi awan, kesan agen AI diramalkan secara eksponen lebih besar, menjanjikan untuk merevolusikan kerja pengetahuan. Keupayaan untuk mensimulasikan keputusan-maki manusia


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!