


Keasliannya mengejutkan! Google dan Cornell University melancarkan teknologi penyiapan imej sebenar RealFill
Mendapatkan foto yang tampan menjadi lebih mudah dan mudah.
Semasa melancong semasa cuti, mengambil gambar adalah satu kemestian. Walau bagaimanapun, kebanyakan foto yang diambil di tempat yang indah adalah lebih kurang mengesalkan sama ada terdapat sesuatu tambahan di latar belakang, atau ada sesuatu yang hilang.
Mendapatkan imej yang "sempurna" adalah salah satu matlamat yang telah lama diperjuangkan oleh penyelidik CV. Baru-baru ini, penyelidik dari Google Research dan Cornell University bekerjasama untuk mencadangkan teknologi "Penyelesaian Imej Sahih"—RealFill, model generatif untuk penyiapan imej.
Kelebihan model RealFill ialah ia boleh diperibadikan dengan sebilangan kecil imej rujukan pemandangan yang tidak perlu diselaraskan dengan imej sasaran malah boleh sangat berbeza dari segi sudut pandangan, keadaan pencahayaan, apertur kamera atau gaya imej. Setelah pemperibadian selesai, RealFill boleh melengkapkan imej sasaran dengan kandungan yang menarik secara visual dengan cara yang benar kepada adegan asal.
Sila klik pautan berikut untuk melihat kertas kerja: https://arxiv.org/abs/2309.16668
Pautan halaman projek: https://realfill.github.io/

Kesan keluaran model Isi Sebenar. Memandangkan imej rujukan di sebelah kiri, RealFill boleh mengembangkan imej sasaran yang sepadan di sebelah kanan. Kawasan di dalam kotak putih disediakan kepada rangkaian sebagai piksel yang diketahui, manakala kawasan di luar kotak putih dijana. Hasilnya menunjukkan bahawa RealFill boleh menjana imej berkualiti tinggi yang sesuai dengan imej rujukan walaupun terdapat perbezaan besar antara imej rujukan dan imej sasaran, termasuk sudut pandangan, apertur, pencahayaan, gaya imej dan gerakan objek. Sumber: Kertas
Akhirnya, penulis mengucapkan terima kasih kepada rakan usaha sama mereka:
Kami ingin mengucapkan terima kasih kepada Rundi Wu, Qianqian Wang, Viraj Shah, Ethan Weber, Zhengqi Li, Kyle Genova, Boyang Deng, Maya Goldenberg, Noah Snavely Ben Poole, Ben Mildenhall, Alex Rav-Acha, Pratul Srinivasan, Dor Verbin dan Jon Barron untuk perbincangan dan maklum balas yang berharga, dan kami juga berterima kasih kepada Zeya Peng, Rundi Wu dan Shan Nan atas sumbangan mereka kepada set data penilaian. Kami amat berterima kasih kepada Jason Baldridge, Kihyuk Sohn, Kathy Meier-Hellstern dan Nicole Brichtova atas maklum balas dan sokongan mereka terhadap projek itu.
Sila baca kertas asal dan lawati laman utama projek untuk maklumat lanjut
Atas ialah kandungan terperinci Keasliannya mengejutkan! Google dan Cornell University melancarkan teknologi penyiapan imej sebenar RealFill. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Penyebaran dalaman yang tidak terkawal sistem AI yang canggih menimbulkan risiko yang signifikan, menurut laporan baru dari Apollo Research. Kekurangan pengawasan ini, lazim di kalangan firma AI utama, membolehkan hasil yang berpotensi bencana, mulai dari UNCON

Pengesan kebohongan tradisional sudah lapuk. Bergantung pada penunjuk yang disambungkan oleh gelang tangan, pengesan kebohongan yang mencetak tanda -tanda penting subjek dan tindak balas fizikal tidak tepat dalam mengenal pasti kebohongan. Inilah sebabnya mengapa keputusan pengesanan kebohongan biasanya tidak diterima pakai oleh mahkamah, walaupun ia telah membawa kepada banyak orang yang tidak bersalah yang dipenjara. Sebaliknya, kecerdasan buatan adalah enjin data yang kuat, dan prinsip kerja adalah untuk memerhatikan semua aspek. Ini bermakna saintis boleh menggunakan kecerdasan buatan kepada aplikasi yang mencari kebenaran melalui pelbagai cara. Satu pendekatan adalah untuk menganalisis tindak balas penting orang yang diinterogasi seperti pengesan dusta, tetapi dengan analisis perbandingan yang lebih terperinci dan tepat. Pendekatan lain adalah menggunakan markup linguistik untuk menganalisis apa yang orang katakan dan menggunakan logik dan penalaran. Seperti kata pepatah, satu pembohongan membiak kebohongan yang lain, dan akhirnya

Industri aeroangkasa, perintis inovasi, memanfaatkan AI untuk menangani cabaran yang paling rumit. Kerumitan Peningkatan Penerbangan Moden memerlukan automasi dan keupayaan perisikan masa nyata AI untuk keselamatan yang dipertingkatkan, dikurangkan oper

Perkembangan pesat robotik telah membawa kita kajian kes yang menarik. Robot N2 dari Noetix beratnya lebih dari 40 paun dan tinggi 3 kaki dan dikatakan dapat backflip. Robot G1 Unitree berat kira -kira dua kali saiz N2 dan kira -kira 4 kaki tinggi. Terdapat juga banyak robot humanoid yang lebih kecil yang menyertai pertandingan ini, dan terdapat juga robot yang didorong ke hadapan oleh peminat. Tafsiran data Setengah maraton menarik lebih daripada 12,000 penonton, tetapi hanya 21 robot humanoid yang mengambil bahagian. Walaupun kerajaan menegaskan bahawa robot yang mengambil bahagian menjalankan "latihan intensif" sebelum pertandingan, tidak semua robot menyelesaikan keseluruhan persaingan. Champion - Tiangong Ult Dibangunkan oleh Pusat Inovasi Robot Humanoid Beijing

Kecerdasan buatan, dalam bentuknya sekarang, tidak benar -benar pintar; Ia mahir meniru dan menyempurnakan data sedia ada. Kami tidak mewujudkan kecerdasan buatan, tetapi sebaliknya kesimpulan buatan -merapikan yang memproses maklumat, sementara manusia su

Laporan mendapati bahawa antara muka yang dikemas kini disembunyikan dalam kod untuk Google Photos Android versi 7.26, dan setiap kali anda melihat foto, satu baris lakaran muka yang baru dikesan dipaparkan di bahagian bawah skrin. Thumbnail wajah baru adalah tag nama yang hilang, jadi saya mengesyaki anda perlu mengkliknya secara individu untuk melihat lebih banyak maklumat mengenai setiap orang yang dikesan. Buat masa ini, ciri ini tidak memberikan maklumat selain daripada orang -orang yang ditemui oleh Google Foto dalam imej anda. Ciri ini belum tersedia, jadi kami tidak tahu bagaimana Google akan menggunakannya dengan tepat. Google boleh menggunakan gambar kecil untuk mempercepatkan mencari lebih banyak gambar orang terpilih, atau boleh digunakan untuk tujuan lain, seperti memilih individu untuk mengedit. Mari tunggu dan lihat. Buat masa ini

Penguatkuasaan penguatkuasaan telah mengguncang pembangunan AI dengan mengajar model untuk menyesuaikan berdasarkan maklum balas manusia. Ia menggabungkan asas pembelajaran yang diawasi dengan kemas kini berasaskan ganjaran untuk menjadikannya lebih selamat, lebih tepat, dan benar-benar membantu

Para saintis telah mengkaji secara meluas rangkaian saraf manusia dan mudah (seperti yang ada di C. elegans) untuk memahami fungsi mereka. Walau bagaimanapun, soalan penting timbul: Bagaimana kita menyesuaikan rangkaian saraf kita sendiri untuk berfungsi dengan berkesan bersama -sama dengan novel AI s


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)
