


Bagaimana untuk menggunakan Django Prophet untuk ramalan beban kuasa?
Bagaimana cara menggunakan Django Prophet untuk ramalan beban kuasa?
Dengan perkembangan pesat industri kuasa, ramalan beban kuasa menjadi semakin penting. Ramalan beban kuasa yang tepat adalah penting bagi syarikat kuasa untuk merancang kapasiti bekalan kuasa, menghantar peralatan penjanaan kuasa secara rasional dan mengoptimumkan operasi sistem kuasa.
Dalam artikel ini, kami akan memperkenalkan cara menggunakan perpustakaan Django Prophet untuk ramalan beban kuasa. Django Prophet ialah perpustakaan ramalan sumber terbuka berdasarkan Python Ia menggabungkan statistik dan kaedah pembelajaran mesin untuk meramalkan data siri masa dengan tepat.
Pertama, kita perlu memasang perpustakaan Django Prophet. Ia boleh dipasang melalui arahan pip Arahan khusus adalah seperti berikut:
pip install django-prophet
Selepas pemasangan selesai, kita perlu menambah kandungan berikut pada fail settings.py projek Django:
INSTALLED_APPS = [ ... 'prophet', ]
Seterusnya, kita perlu untuk menyediakan data untuk ramalan beban kuasa. Katakan kita mempunyai fail CSV yang mengandungi data masa dan beban kuasa Data boleh dibaca menggunakan perpustakaan panda.
import pandas as pd data = pd.read_csv('load_data.csv')
Selepas membaca data, kita perlu praproses data. Mula-mula, tukar lajur masa kepada format tarikh dan tetapkannya sebagai indeks.
data['time'] = pd.to_datetime(data['time']) data.set_index('time', inplace=True)
Seterusnya, kita perlu mencipta model Django Prophet untuk ramalan beban kuasa. Kod berikut boleh ditambah pada fail views.py:
from django.http import JsonResponse from prophet import Prophet def load_forecast(request): model = Prophet() model.fit(data) future = model.make_future_dataframe(periods=30) # 预测未来30天的负荷 forecast = model.predict(future) forecast_data = forecast[['ds', 'yhat']].tail(30) # 获取最后30天的预测结果 result = forecast_data.to_dict(orient='records') return JsonResponse(result, safe=False)
Dalam kod di atas, kami mencipta model Nabi dan menggunakan kaedah muat untuk memuatkan data. Kemudian, gunakan kaedah make_future_dataframe untuk mencipta DataFrame yang mengandungi masa hadapan, di sini kami meramalkan beban untuk 30 hari seterusnya. Akhir sekali, gunakan kaedah ramalan untuk membuat ramalan.
Seterusnya, kita boleh menambah kod berikut dalam fail urls.py untuk menyediakan penghalaan URL:
from django.urls import path from . import views urlpatterns = [ ... path('load_forecast/', views.load_forecast, name='load_forecast'), ]
Kini, kita boleh memulakan perkhidmatan Django dan mendapatkan hasil ramalan beban kuasa dengan mengakses http://localhost:8000/load_forecast/
.
Di atas adalah keseluruhan proses menggunakan Django Prophet untuk ramalan beban kuasa. Dengan menggabungkan rangka kerja web Django dan keupayaan ramalan Nabi, kami boleh melakukan ramalan beban kuasa dengan mudah dan memaparkan hasilnya pada antara muka web. Sudah tentu, dalam aplikasi praktikal, kita boleh mengoptimumkan lagi parameter model untuk mendapatkan hasil ramalan yang lebih tepat.
Saya harap artikel ini dapat membantu pembaca memahami cara menggunakan Django Prophet untuk ramalan beban kuasa dan mencari aplikasi berguna dalam aplikasi praktikal. Terima kasih kerana membaca!
Atas ialah kandungan terperinci Bagaimana untuk menggunakan Django Prophet untuk ramalan beban kuasa?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!
