Rumah >pembangunan bahagian belakang >Tutorial Python >Bagaimana untuk melakukan ANCOVA dalam Python?

Bagaimana untuk melakukan ANCOVA dalam Python?

王林
王林ke hadapan
2023-09-01 17:21:051133semak imbas

Bagaimana untuk melakukan ANCOVA dalam Python?

ANCOVA (Analisis Kovarian) ialah kaedah statistik yang berguna kerana ia boleh memasukkan kovariat dalam analisis, yang boleh membantu melaraskan pembolehubah tambahan dan meningkatkan ketepatan perbandingan antara kumpulan. Faktor tambahan atau kovariat ini boleh dimasukkan ke dalam kajian dengan menggunakan ANCOVA. Untuk memastikan bahawa perbezaan yang diperhatikan antara kumpulan disebabkan oleh rawatan atau campur tangan dalam kajian dan bukan oleh faktor luar, ANCOVA boleh digunakan untuk melaraskan kesan kovariat pada min kumpulan. Ini membolehkan perbandingan yang lebih tepat antara kumpulan dan memberikan kesimpulan yang lebih dipercayai tentang hubungan antara pembolehubah. Dalam artikel ini, kita akan melihat lebih dekat pada ANCOVA dan melaksanakannya dalam Python.

Apakah itu ANCOVA?

Kaedah analisis kovarian (ANCOVA) membandingkan cara dua atau lebih kumpulan sambil menyesuaikan untuk kesan satu atau lebih pembolehubah berterusan (dipanggil kovariat). ANCOVA adalah serupa dengan ANOVA (analisis varians), tetapi ia membenarkan pembolehubah dimasukkan ke dalam model. Oleh itu, ia adalah alat yang berharga untuk menilai kesan faktor-faktor ini ke atas cara kumpulan dan membuat perbandingan yang lebih tepat antara kumpulan.

Pertimbangkan senario berikut − Anda sedang menjalankan kajian untuk menilai keberkesanan ubat penurun tekanan darah baru. Anda mengumpul data tekanan darah untuk sekumpulan orang yang mengambil ubat dan kumpulan yang tidak, serta data tentang umur setiap peserta. Anda boleh menggunakan ANCOVA untuk membandingkan min dua kumpulan pada pembolehubah bersandar (tekanan darah) sambil melaraskan untuk kesan kovariat (umur) pada min kumpulan. Ini akan membolehkan anda menentukan sama ada ubat itu berjaya menurunkan tekanan darah dengan mengambil kira sebarang perbezaan umur antara kumpulan.

Melaksanakan ANCOVA dalam Python

Pertimbangkan ANCOVA berikut yang dilakukan dalam Python menggunakan modul statsmodels:

Tatabahasa

df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16],
   'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"],
   'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]})

model = ols('dependent_variable ~ group + covariate', data=df).fit()

Menggunakan modul statsmodels Python, ANCOVA (analisis kovarians) boleh dilakukan. Analisis kovarians (ANCOVA) ialah kaedah statistik yang digunakan untuk membandingkan cara dua atau lebih kumpulan sambil menyesuaikan untuk kesan satu atau lebih pembolehubah berterusan, dipanggil kovariat.

Algoritma

  • Import Panda dan statsmodel.api

  • Tentukan data Ancova

  • Lakukan operasi Ancova

  • Cetak ringkasan model

Terjemahan bahasa Cina bagi

Contoh

ialah:

Contoh

Berikut ialah demonstrasi menggunakan perpustakaan scikit-posthocs untuk menjalankan ujian Dunn -

import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols

# Define the data for the ANCOVA
df = pd.DataFrame({'dependent_variable' : [8, 7, 9, 11, 10, 12, 14, 13, 15, 16],
   'group' : ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"],
    'covariate' : [20, 30, 40, 30, 40, 50, 40, 50, 60, 70]})

# Perform the ANCOVA
model = ols('dependent_variable ~ group + covariate', data=df).fit()

# Print the summary of the model
print(model.summary())

Output

                           OLS Regression Results                            
==============================================================================
Dep. Variable:     dependent_variable   R-squared:                       0.939
Model:                            OLS   Adj. R-squared:                  0.909
Method:                 Least Squares   F-statistic:                     31.00
Date:                Fri, 09 Dec 2022   Prob (F-statistic):           0.000476
Time:                        09:52:28   Log-Likelihood:                -10.724
No. Observations:                  10   AIC:                             29.45
Df Residuals:                       6   BIC:                             30.66
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      6.0000      1.054      5.692      0.001       3.421       8.579
group[T.B]     2.3333      0.805      2.898      0.027       0.363       4.303
group[T.C]     4.8333      1.032      4.684      0.003       2.308       7.358
covariate      0.0667      0.030      2.191      0.071      -0.008       0.141
==============================================================================
Omnibus:                        2.800   Durbin-Watson:                   2.783
Prob(Omnibus):                  0.247   Jarque-Bera (JB):                1.590
Skew:                          -0.754   Prob(JB):                        0.452
Kurtosis:                       1.759   Cond. No.                         201.

Anggaran pekali pembolehubah kumpulan dan kovariat, bersama-sama dengan nilai-p dan had keyakinan mereka, akan dimasukkan dalam output kod ini. Data ini boleh digunakan untuk membandingkan min kumpulan semasa mengambil kira kesan kovariat dan untuk menilai kepentingan pembolehubah kumpulan dan kovariat dalam model.

Secara keseluruhan, modul statsmodels menyediakan pengguna Python alat yang berkuasa dan boleh disesuaikan untuk melaksanakan ANCOVA. Ia memudahkan untuk mencipta, menguji, menganalisis dan memahami model ANCOVA dan outputnya.

Kesimpulan

Akhir sekali, ANCOVA (Analysis of Covariance) ialah kaedah statistik yang digunakan untuk membandingkan min dua atau lebih kumpulan sambil melaraskan pengaruh satu atau lebih pembolehubah berterusan (dipanggil kovariat). ANCOVA adalah serupa dengan ANOVA (Analysis of Variance), tetapi ia membenarkan pembolehubah dimasukkan ke dalam model. Oleh itu, ia adalah alat yang berharga untuk menilai kesan faktor-faktor ini ke atas cara kumpulan dan menjana perbandingan antara kumpulan yang lebih tepat. Ia digunakan secara meluas dalam pelbagai bidang penyelidikan, termasuk psikologi, biologi, dan ekonomi, untuk menilai kesan kovariat pada cara kumpulan dan untuk membuat kesimpulan yang lebih tepat tentang korelasi berubah.

Atas ialah kandungan terperinci Bagaimana untuk melakukan ANCOVA dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:tutorialspoint.com. Jika ada pelanggaran, sila hubungi admin@php.cn Padam