


Dalam C++, cari jumlah faktorial dan akhiran tatasusunan dalam tatasusunan yang diberikan
Menemui faktorial akhiran dan jumlah akhiran yang sepadan daripada tatasusunan adalah boleh dilaksanakan sepenuhnya apabila anda memahami alatan dan teknik bahasa pengaturcaraan C++. Itulah yang akan kita bincangkan dalam artikel ini, termasuk sintaks kaedah, kerumitan algoritma dan cara yang cekap untuk membongkarnya. Selain itu, artikel ini menunjukkan dua contoh kod konkrit berdasarkan kaedah ini. Akhir sekali, kami meringkaskan cerapan kami tentang pengambilan penting.
Tatabahasa
Untuk memastikan pemahaman yang jelas tentang contoh kod yang akan datang, sila biasakan diri anda dengan sintaks kaedah yang digunakan sebelum menyelami algoritmanya.
// Method syntax <return_type> methodName(<parameters>) { // Method implementation }
Algoritma
Sekarang, mari kita gariskan algoritma langkah demi langkah untuk mencari akhiran faktorial dan jumlah akhiran untuk tatasusunan −
Memulakan tatasusunan kosong untuk menyimpan akhiran faktorial.
Untuk berjaya menyelesaikan misi ini. Adalah disyorkan untuk mengulang tatasusunan yang disediakan dalam susunan terbalik. Dalam setiap lelaran, pengiraan faktorial mesti dilakukan pada elemen semasa dan hasilnya disimpan dalam tatasusunan faktorial akhiran tambahan.
Mulakan tatasusunan jumlah akhiran menggunakan elemen terakhir tatasusunan yang diberikan.
Lintas tatasusunan faktorial akhiran dalam susunan terbalik.
Untuk setiap elemen dalam tatasusunan faktorial akhiran, jumlah akhiran yang sepadan dikira dengan menambahkannya pada jumlah sebelumnya dan disimpan dalam tatasusunan jumlah akhiran.
Kaedah 1: Kaedah berulang
Dalam kaedah ini kita akan menggunakan kaedah berulang untuk mencari sufiks faktorial dan tatasusunan jumlah akhiran.
Terjemahan bahasa Cina bagiContoh
ialah:Contoh
#include <iostream> // Function to calculate the factorial of a given number int factorial(int n) { int fact = 1; for (int i = 2; i <= n; i++) { fact *= i; } return fact; } int main() { // Initialize the given array int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr) / sizeof(arr[0]); // Create an array to store the suffix factorials int suffixFactorials[n]; // Calculate the suffix factorials for (int i = n - 1; i >= 0; i--) { suffixFactorials[i] = factorial(arr[i]); } // Create an array to store the suffix sum int suffixSum[n]; // Calculate the suffix sum suffixSum[n - 1] = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { suffixSum[i] = suffixSum[i + 1] + suffixFactorials[i]; } // Output the suffix factorials and the suffix sum for (int i = 0; i < n; i++) { std::cout << "Suffix Factorial[" << i << "]: " << suffixFactorials[i] << std::endl; std::cout << "Suffix Sum[" << i << "]: " << suffixSum[i] << std::endl; } return 0; }
Output
Suffix Factorial[0]: 1 Suffix Sum[0]: 38 Suffix Factorial[1]: 2 Suffix Sum[1]: 37 Suffix Factorial[2]: 6 Suffix Sum[2]: 35 Suffix Factorial[3]: 24 Suffix Sum[3]: 29 Suffix Factorial[4]: 120 Suffix Sum[4]: 5
Penjelasan
diterjemahkan sebagai:Penjelasan
Kaedah lelaran mencari tatasusunan faktorial akhiran dan jumlah akhiran melibatkan merentasi tatasusunan yang diberikan dalam susunan terbalik. Untuk setiap elemen dalam tatasusunan, faktorial dikira menggunakan kaedah berulang dan disimpan dalam tatasusunan faktorial akhiran. Mencipta dan memulakan akhiran dan tatasusunan secara serentak, dengan nilai awal menjadi elemen terakhir tatasusunan yang diberikan. Melaksanakan strategi yang mudah tetapi berkesan boleh menyelesaikan masalah ini dengan mudah dan cekap pada masa yang sama. Langkah pertama ialah mengulangi tatasusunan faktorial akhiran, tetapi simpannya dalam susunan terbalik dan bukannya tertib hadapan. Menggunakan traversal ini membolehkan kami mengira dengan mudah setiap jumlah akhiran dengan menambahkannya pada pengiraan sebelumnya dan mengekodkannya ke dalam pembolehubah output sasaran kami.
Kaedah 2: Kaedah rekursif
Strategi kami melibatkan penggunaan konsep jarak Hamming untuk menyelesaikan masalah yang ditimbulkan.
Terjemahan bahasa Cina bagiContoh
ialah:Contoh
#include <iostream> // Function to calculate the factorial of a given number recursively int factorial(int n) { if (n == 0 || n == 1) { return 1; } return n * factorial(n - 1); } int main() { // Initialize the given array int arr[] = {1, 2, 3, 4, 5}; int n = sizeof(arr) / sizeof(arr[0]); // Create an array to store the suffix factorials int suffixFactorials[n]; // Calculate the suffix factorials for (int i = n - 1; i >= 0; i--) { suffixFactorials[i] = factorial(arr[i]); } // Create an array to store the suffix sum int suffixSum[n]; // Calculate the suffix sum suffixSum[n - 1] = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { suffixSum[i] = suffixSum[i + 1] + suffixFactorials[i]; } // Output the suffix factorials and the suffix sum for (int i = 0; i < n; i++) { std::cout << "Suffix Factorial[" << i << "]: " << suffixFactorials[i] << std::endl; std::cout << "Suffix Sum[" << i << "]: " << suffixSum[i] << std::endl; } return 0; }
Output
Suffix Factorial[0]: 1 Suffix Sum[0]: 38 Suffix Factorial[1]: 2 Suffix Sum[1]: 37 Suffix Factorial[2]: 6 Suffix Sum[2]: 35 Suffix Factorial[3]: 24 Suffix Sum[3]: 29 Suffix Factorial[4]: 120 Suffix Sum[4]: 5
Penjelasan
diterjemahkan sebagai:Penjelasan
Untuk mendapatkan sufiks faktorial dan tatasusunan terjumlah, strategi rekursif digunakan. Mengulang ke belakang bermula dari penghujung tatasusunan yang diberikan, fungsi rekursif mengira faktorialnya. Nilai ini kemudiannya disimpan dalam tatasusunan faktorial akhiran yang berkaitan. Langkah seterusnya ialah untuk memulakan tatasusunan jumlah akhiran baharu dengan memberikan elemen terakhir koleksi input kepadanya. Menjadualkan pengiraan penjumlahan ke dalam tatasusunan yang baru dijana ini sambil mengulangi pengiraan ke atas set faktor yang kami bina sebelum ini dalam susunan terbalik dengan menggunakan lelaran rekursif secara berkesan, menghasilkan hasil yang kami cari.
Kesimpulan
Ringkasnya, kami menggunakan bahasa pengaturcaraan C++ untuk mengkaji konsep mengenal pasti faktorial akhiran dan memadankan tatasusunan jumlah akhiran dalam tatasusunan input. Analisis kami menghasilkan dua pendekatan berbeza: berulang dan rekursif. Di samping itu, kami telah memasukkan contoh kod yang tepat untuk menunjukkan kefungsian setiap kaedah dengan berkesan. Dengan memahami dan melaksanakan kaedah ini, anda boleh menyelesaikan masalah serupa dengan cekap melibatkan pengiraan faktorial akhiran dan jumlah akhiran dengan tatasusunan. Teruskan meneroka dan mencuba algoritma yang berbeza untuk meningkatkan kemahiran pengaturcaraan anda.
Atas ialah kandungan terperinci Dalam C++, cari jumlah faktorial dan akhiran tatasusunan dalam tatasusunan yang diberikan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Perbezaan utama antara C# dan C ialah pengurusan memori, pelaksanaan polimorfisme dan pengoptimuman prestasi. 1) C# menggunakan pemungut sampah untuk mengurus memori secara automatik, sementara C perlu diuruskan secara manual. 2) C# menyedari polimorfisme melalui antara muka dan kaedah maya, dan C menggunakan fungsi maya dan fungsi maya murni. 3) Pengoptimuman prestasi C# bergantung kepada struktur dan pengaturcaraan selari, manakala C dilaksanakan melalui fungsi inline dan multithreading.

Kaedah DOM dan SAX boleh digunakan untuk menghuraikan data XML dalam C. 1) DOM Parsing beban XML ke dalam ingatan, sesuai untuk fail kecil, tetapi mungkin mengambil banyak ingatan. 2) Parsing Sax didorong oleh peristiwa dan sesuai untuk fail besar, tetapi tidak dapat diakses secara rawak. Memilih kaedah yang betul dan mengoptimumkan kod dapat meningkatkan kecekapan.

C digunakan secara meluas dalam bidang pembangunan permainan, sistem tertanam, urus niaga kewangan dan pengkomputeran saintifik, kerana prestasi dan fleksibiliti yang tinggi. 1) Dalam pembangunan permainan, C digunakan untuk rendering grafik yang cekap dan pengkomputeran masa nyata. 2) Dalam sistem tertanam, pengurusan memori dan keupayaan kawalan perkakasan C menjadikannya pilihan pertama. 3) Dalam bidang urus niaga kewangan, prestasi tinggi C memenuhi keperluan pengkomputeran masa nyata. 4) Dalam pengkomputeran saintifik, pelaksanaan algoritma yang cekap C dan keupayaan pemprosesan data sepenuhnya dicerminkan.

C tidak mati, tetapi telah berkembang dalam banyak bidang utama: 1) pembangunan permainan, 2) pengaturcaraan sistem, 3) pengkomputeran berprestasi tinggi, 4) pelayar dan aplikasi rangkaian, C masih pilihan arus perdana, menunjukkan senario vitalitas dan aplikasi yang kuat.

Perbezaan utama antara C# dan C ialah sintaks, pengurusan memori dan prestasi: 1) C# sintaks adalah moden, menyokong Lambda dan Linq, dan C mengekalkan ciri -ciri C dan menyokong templat. 2) C# secara automatik menguruskan memori, C perlu diuruskan secara manual. 3) Prestasi C lebih baik daripada C#, tetapi prestasi C# juga dioptimumkan.

Anda boleh menggunakan perpustakaan TinyXML, PuGixML, atau libxml2 untuk memproses data XML dalam C. 1) Parse XML Files: Gunakan kaedah DOM atau SAX, DOM sesuai untuk fail kecil, dan SAX sesuai untuk fail besar. 2) Menjana fail XML: Tukar struktur data ke dalam format XML dan tulis ke fail. Melalui langkah -langkah ini, data XML dapat diuruskan dan dimanipulasi dengan berkesan.

Bekerja dengan struktur data XML di C boleh menggunakan perpustakaan TinyXML atau PugixML. 1) Gunakan perpustakaan PugixML untuk menghuraikan dan menghasilkan fail XML. 2) Mengendalikan elemen XML bersarang kompleks, seperti maklumat buku. 3) Mengoptimumkan kod pemprosesan XML, dan disyorkan untuk menggunakan perpustakaan yang cekap dan parsing streaming. Melalui langkah -langkah ini, data XML dapat diproses dengan cekap.

C masih menguasai pengoptimuman prestasi kerana pengurusan memori peringkat rendah dan keupayaan pelaksanaan yang cekap menjadikannya sangat diperlukan dalam pembangunan permainan, sistem transaksi kewangan dan sistem tertanam. Khususnya, ia ditunjukkan sebagai: 1) dalam pembangunan permainan, pengurusan memori peringkat rendah C dan keupayaan pelaksanaan yang cekap menjadikannya bahasa pilihan untuk pembangunan enjin permainan; 2) Dalam sistem transaksi kewangan, kelebihan prestasi C memastikan latensi yang sangat rendah dan throughput yang tinggi; 3) Dalam sistem tertanam, pengurusan memori peringkat rendah C dan keupayaan pelaksanaan yang cekap menjadikannya sangat popular dalam persekitaran yang terkawal sumber.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.
