


Bagaimana untuk menangani masalah pemampatan dan penyahmampatan data dalam pembangunan data besar C++?
Bagaimana untuk menangani isu pemampatan dan penyahmampatan data dalam pembangunan data besar C++?
Pengenalan:
Dalam aplikasi data besar moden, pemampatan data dan penyahmampatan adalah teknologi yang sangat penting. Pemampatan data boleh mengurangkan ruang yang diduduki oleh data semasa penyimpanan dan penghantaran, dengan itu mempercepatkan penghantaran data dan mengurangkan kos penyimpanan. Artikel ini akan memperkenalkan cara menangani isu pemampatan dan penyahmampatan data dalam pembangunan data besar C++ dan menyediakan contoh kod yang berkaitan.
1. Mampatan Data
Mampatan data ialah proses menukar data mentah kepada format yang lebih padat. Dalam C++, kita boleh menggunakan pelbagai algoritma pemampatan untuk memampatkan data, seperti Gzip, Deflate, dsb. Berikut ialah contoh kod yang menggunakan algoritma Gzip untuk pemampatan data:
#include <iostream> #include <fstream> #include <sstream> #include <string> #include <cassert> #include <zlib.h> std::string compressData(const std::string& input) { z_stream zs; // z_stream is zlib's control structure memset(&zs, 0, sizeof(zs)); if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) throw(std::runtime_error("deflateInit failed while compressing.")); zs.next_in = (Bytef*)input.data(); zs.avail_in = input.size(); // set the z_stream's input int ret; char outbuffer[32768]; std::string outstring; // retrieve the compressed bytes blockwise do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); ret = deflate(&zs, Z_FINISH); if (outstring.size() < zs.total_out) { // append the block to the output string outstring.append(outbuffer, zs.total_out - outstring.size()); } } while (ret == Z_OK); deflateEnd(&zs); if (ret != Z_STREAM_END) { // an error occurred that was not EOF std::ostringstream oss; oss << "Exception during zlib compression: (" << ret << ") " << zs.msg; throw(std::runtime_error(oss.str())); } return outstring; } int main() { std::string input = "This is a sample string to be compressed."; std::string compressed = compressData(input); std::cout << "Original size: " << input.size() << std::endl; std::cout << "Compressed size: " << compressed.size() << std::endl; return 0; }
2. Penyahmampatan data
Penyahmampatan data ialah proses memulihkan data yang dimampatkan kepada data asal. Dalam C++, kita boleh menggunakan fungsi penyahmampatan yang sepadan dengan algoritma pemampatan untuk menyahmampat data Contohnya, fungsi penyahmampatan yang sepadan dengan Gzip ialah gunzip. Berikut ialah contoh kod yang menggunakan algoritma Gzip untuk penyahmampatan data:
#include <iostream> #include <fstream> #include <sstream> #include <string> #include <cassert> #include <zlib.h> std::string decompressData(const std::string& input) { z_stream zs; // z_stream is zlib's control structure memset(&zs, 0, sizeof(zs)); if (inflateInit(&zs) != Z_OK) throw(std::runtime_error("inflateInit failed while decompressing.")); zs.next_in = (Bytef*)input.data(); zs.avail_in = input.size(); int ret; char outbuffer[32768]; std::string outstring; // get the decompressed bytes blockwise using repeated calls to inflate do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); ret = inflate(&zs, 0); if (outstring.size() < zs.total_out) { outstring.append(outbuffer, zs.total_out - outstring.size()); } } while (ret == Z_OK); inflateEnd(&zs); if (ret != Z_STREAM_END) { // an error occurred that was not EOF std::ostringstream oss; oss << "Exception during zlib decompression: (" << ret << ") " << zs.msg; throw(std::runtime_error(oss.str())); } return outstring; } int main() { std::string decompressed = decompressData(compressed); std::cout << "Compressed size: " << compressed.size() << std::endl; std::cout << "Decompressed size: " << decompressed.size() << std::endl; return 0; }
Kesimpulan:
Artikel ini memperkenalkan kaedah mengendalikan masalah mampatan dan penyahmampatan data dalam pembangunan data besar C++, dan menyediakan contoh kod yang berkaitan. Melalui pemilihan algoritma pemampatan dan fungsi penyahmampatan yang munasabah, kami boleh mengurangkan penyimpanan data dan overhed penghantaran dan meningkatkan prestasi dan kecekapan program semasa pemprosesan data besar. Diharapkan pembaca boleh menggunakan pengetahuan ini secara fleksibel dalam aplikasi praktikal untuk mengoptimumkan aplikasi data besar mereka sendiri.
Atas ialah kandungan terperinci Bagaimana untuk menangani masalah pemampatan dan penyahmampatan data dalam pembangunan data besar C++?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

C masih menguasai pengoptimuman prestasi kerana pengurusan memori peringkat rendah dan keupayaan pelaksanaan yang cekap menjadikannya sangat diperlukan dalam pembangunan permainan, sistem transaksi kewangan dan sistem tertanam. Khususnya, ia ditunjukkan sebagai: 1) dalam pembangunan permainan, pengurusan memori peringkat rendah C dan keupayaan pelaksanaan yang cekap menjadikannya bahasa pilihan untuk pembangunan enjin permainan; 2) Dalam sistem transaksi kewangan, kelebihan prestasi C memastikan latensi yang sangat rendah dan throughput yang tinggi; 3) Dalam sistem tertanam, pengurusan memori peringkat rendah C dan keupayaan pelaksanaan yang cekap menjadikannya sangat popular dalam persekitaran yang terkawal sumber.

Pilihan kerangka C XML harus berdasarkan keperluan projek. 1) TinyXML sesuai untuk persekitaran yang terkawal sumber, 2) PugixML sesuai untuk keperluan berprestasi tinggi, 3) Xerces-C menyokong pengesahan XMLSchema kompleks, dan prestasi, kemudahan penggunaan dan lesen mesti dipertimbangkan ketika memilih.

C# sesuai untuk projek yang memerlukan kecekapan pembangunan dan keselamatan jenis, manakala C sesuai untuk projek yang memerlukan prestasi tinggi dan kawalan perkakasan. 1) C# menyediakan koleksi sampah dan LINQ, sesuai untuk aplikasi perusahaan dan pembangunan Windows. 2) C dikenali dengan prestasi tinggi dan kawalan asasnya, dan digunakan secara meluas dalam pengaturcaraan permainan dan sistem.

Pengoptimuman kod C boleh dicapai melalui strategi berikut: 1. Menguruskan memori secara manual untuk penggunaan pengoptimuman; 2. Tulis kod yang mematuhi peraturan pengoptimuman pengkompil; 3. Pilih algoritma dan struktur data yang sesuai; 4. Gunakan fungsi inline untuk mengurangkan overhead panggilan; 5. Memohon template metaprogramming untuk mengoptimumkan pada masa penyusunan; 6. Elakkan penyalinan yang tidak perlu, gunakan semantik bergerak dan parameter rujukan; 7. Gunakan Const dengan betul untuk membantu pengoptimuman pengkompil; 8. Pilih struktur data yang sesuai, seperti STD :: vektor.

Kata kunci yang tidak menentu dalam C digunakan untuk memaklumkan pengkompil bahawa nilai pembolehubah boleh diubah di luar kawalan kod dan oleh itu tidak dapat dioptimumkan. 1) Ia sering digunakan untuk membaca pembolehubah yang boleh diubahsuai oleh perkakasan atau program perkhidmatan mengganggu, seperti keadaan sensor. 2) Tidak menentu tidak dapat menjamin keselamatan multi-thread, dan harus menggunakan kunci mutex atau operasi atom. 3) Menggunakan tidak menentu boleh menyebabkan prestasi sedikit berkurangan, tetapi memastikan ketepatan program.

Mengukur prestasi thread di C boleh menggunakan alat masa, alat analisis prestasi, dan pemasa tersuai di perpustakaan standard. 1. Gunakan perpustakaan untuk mengukur masa pelaksanaan. 2. Gunakan GPROF untuk analisis prestasi. Langkah -langkah termasuk menambah pilihan -pg semasa penyusunan, menjalankan program untuk menghasilkan fail gmon.out, dan menghasilkan laporan prestasi. 3. Gunakan modul Callgrind Valgrind untuk melakukan analisis yang lebih terperinci. Langkah -langkah termasuk menjalankan program untuk menghasilkan fail callgrind.out dan melihat hasil menggunakan kcachegrind. 4. Pemasa tersuai secara fleksibel dapat mengukur masa pelaksanaan segmen kod tertentu. Kaedah ini membantu memahami sepenuhnya prestasi benang dan mengoptimumkan kod.

Menggunakan perpustakaan Chrono di C membolehkan anda mengawal selang masa dan masa dengan lebih tepat. Mari kita meneroka pesona perpustakaan ini. Perpustakaan Chrono C adalah sebahagian daripada Perpustakaan Standard, yang menyediakan cara moden untuk menangani selang waktu dan masa. Bagi pengaturcara yang telah menderita dari masa. H dan CTime, Chrono tidak diragukan lagi. Ia bukan sahaja meningkatkan kebolehbacaan dan mengekalkan kod, tetapi juga memberikan ketepatan dan fleksibiliti yang lebih tinggi. Mari kita mulakan dengan asas -asas. Perpustakaan Chrono terutamanya termasuk komponen utama berikut: STD :: Chrono :: System_Clock: Mewakili jam sistem, yang digunakan untuk mendapatkan masa semasa. Std :: Chron

C berfungsi dengan baik dalam pengaturcaraan sistem operasi masa nyata (RTOS), menyediakan kecekapan pelaksanaan yang cekap dan pengurusan masa yang tepat. 1) C memenuhi keperluan RTO melalui operasi langsung sumber perkakasan dan pengurusan memori yang cekap. 2) Menggunakan ciri berorientasikan objek, C boleh merancang sistem penjadualan tugas yang fleksibel. 3) C menyokong pemprosesan gangguan yang cekap, tetapi peruntukan memori dinamik dan pemprosesan pengecualian mesti dielakkan untuk memastikan masa nyata. 4) Pemrograman templat dan fungsi sebaris membantu dalam pengoptimuman prestasi. 5) Dalam aplikasi praktikal, C boleh digunakan untuk melaksanakan sistem pembalakan yang cekap.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Dreamweaver CS6
Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.
