Rumah > Artikel > pembangunan bahagian belakang > Pandas+Pyecharts |. Visualisasi analisis data jualan produk elektronik + potret RFM pengguna
Isu ini menggunakan Python untuk menganalisis data jualan produk elektronik, sila lihat:
pesanan setiap bulan
Pengagihan kuantiti pesanan harian
Kadaran pesanan pengguna lelaki dan wanita
oleh wanita/lelakiPesanan untuk semua peringkat umur Kuantiti Jumlah Pesanan
Imej RFM Pengguna
Semoga ia membantu semua orang, jika anda mempunyai sebarang soalan Jika anda memerlukan penambahbaikan, sila hubungi editor.
Perpustakaan yang terlibat:
Panda 一共有564169条数据,其中category_code、brand两列有部分数据缺失。 2.3 去掉部分用不到的列 (564169, 9) 2.4 去除重复数据 2.5 增加部分时间列 2.6 过滤数据,也可以选择均值填充 8月份的订单量和订单额达到峰值。 男性订单数量占比49.55%,女性订单数量占比50.45%,基本持平。 3.5 女性/男性购买商品TOP20 3.7 各年龄段购买商品TOP10 3.8 用户RFM等级画像 RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为(R)、购买的总体频率(F)以及花了多少钱(M)三项指标来描述该客户的价值状况,从而能够更加准确地将成本和精力更精确的花在用户层次身上,实现针对性的营销。 用户分类: 计算等级: 用户画像: 根据RFM模型可将用户分为以下8类: 重要保持客户:最近消费时间较远,消费金额和频次都很高。 Pelanggan pembangunan penting: Pengguna yang mempunyai masa penggunaan baru-baru ini dan jumlah penggunaan yang tinggi, tetapi frekuensi rendah dan kesetiaan rendah, yang berpotensi tinggi, mesti memberi tumpuan kepada pembangunan. Pengekalan pelanggan yang penting: Pengguna yang masa penggunaan baru-baru ini jauh dan kekerapan penggunaan tidak tinggi, tetapi jumlah penggunaan yang tinggi mungkin pengguna yang akan hilang atau sudah hilang, dan langkah pengekalan perlu diambil. Pelanggan nilai am: masa penggunaan baru-baru ini, frekuensi tinggi tetapi jumlah penggunaan rendah Perlu menaikkan harga unit mereka. Pelanggan pembangunan am: Masa penggunaan baru-baru ini agak baru-baru ini, dan jumlah penggunaan serta kekerapan tidak tinggi. Secara amnya mengekalkan pelanggan : Masa penggunaan baru-baru ini jauh, kekerapan penggunaan tinggi, dan jumlah penggunaan tidak tinggi.
—Pemprosesan dataPyecarts
—Penggambaran datapemprosesan data P andasimport pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import PictorialBar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import warnings
warnings.filterwarnings('ignore')
df1 = df[['event_time', 'order_id', 'category_code', 'brand', 'price', 'user_id', 'age', 'sex', 'local']]
df1.shape
df1 = df1.drop_duplicates()
df1.shape
(556456, 9)
df1['event_time'] = pd.to_datetime(df1['event_time'].str[:19],format="%Y-%m-%d %H:%M:%S")
df1['Year'] = df1['event_time'].dt.year
df1['Month'] = df1['event_time'].dt.month
df1['Day'] = df1['event_time'].dt.day
df1['hour'] = df1['event_time'].dt.hour
df1.head(10)
df1 = df1.dropna(subset=['category_code'])
df1 = df1[(df1["Year"] == 2020)&(df1["price"] > 0)]
df1.shape
(429261, 13)
2.7 对年龄分组
df1['age_group'] = pd.cut(df1['age'],[10,20,30,40,50],labels=['10-20','20-30','30-40','40-50'])
2.8 增加商品一、二级分类
df1["category_code_1"] = df1["category_code"].apply(lambda x: x.split(".")[0] if "." in x else x)
df1["category_code_2"] = df1["category_code"].apply(lambda x: x.split(".")[-1] if "." in x else x)
df1.head(10)
def get_bar1():
bar1 = (
Bar()
.add_xaxis(x_data)
.add_yaxis("订单数量", y_data1)
.extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value}万")))
.set_global_opts(
legend_opts=opts.LegendOpts(pos_top='25%', pos_left='center'),
title_opts=opts.TitleOpts(
title='1-每月订单数量订单额',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='7%',
pos_left="center"
)
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis("订单额", y_data2, yaxis_index=1)
)
bar1.overlap(line)
def get_bar2():
pie1 = (
Pie()
.add(
"",
datas,
radius=["13%", "25%"],
label_opts=opts.LabelOpts(formatter="{b}: {d}%"),
)
)
bar1 = (
Bar(init_opts=opts.InitOpts(theme='dark', width='1000px', height='600px', bg_color='#0d0735'))
.add_xaxis(x_data)
.add_yaxis("", y_data, itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)))
.set_global_opts(
legend_opts=opts.LegendOpts(is_show=False),
title_opts=opts.TitleOpts(
title='2-一月各天订单数量分布',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='7%',
pos_left="center"
)
)
)
bar1.overlap(pie1)
def get_bar3():
bar1 = (
Bar()
.add_xaxis(x_data1)
.add_yaxis('女性', y_data1,
label_opts=opts.LabelOpts(position='right')
)
.set_global_opts(
title_opts=opts.TitleOpts(
title='5-女性/男性购买商品TOP20',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='3%',
pos_left="center"),
legend_opts=opts.LegendOpts(pos_left='20%', pos_top='10%')
)
.reversal_axis()
)
bar2 = (
Bar()
.add_xaxis(x_data2)
.add_yaxis('男性', y_data2,
label_opts=opts.LabelOpts(position='right')
)
.set_global_opts(
legend_opts=opts.LegendOpts(pos_right='25%', pos_top='10%')
)
.reversal_axis()
)
grid1 = (
Grid()
.add(bar1, grid_opts=opts.GridOpts(pos_left='12%', pos_right='50%', pos_top='15%'))
.add(bar2, grid_opts=opts.GridOpts(pos_left='60%', pos_right='5%', pos_top='15%'))
)
def rfm_func(x):
level = x.apply(lambda x:"1" if x > 0 else '0')
RMF = level.R + level.F + level.M
dic_rfm ={
'111':'重要价值客户',
'011':'重要保持客户',
'101':'重要发展客户',
'001':'重要挽留客户',
'110':'一般价值客户',
'100':'一般发展客户',
'010':'一般保持客户',
'000':'一般挽留客户'
}
result = dic_rfm[RMF]
return result
df_rfm = df1.copy()
df_rfm = df_rfm[['user_id','event_time','price']]
# 时间以当年年底为准
df_rfm['days'] = (pd.to_datetime("2020-12-31")-df_rfm["event_time"]).dt.days
# 计算等级
df_rfm = pd.pivot_table(df_rfm,index="user_id",
values=["user_id","days","price"],
aggfunc={"user_id":"count","days":"min","price":"sum"})
df_rfm = df_rfm[["days","user_id","price"]]
df_rfm.columns = ["R","F","M"]
df_rfm['RMF'] = df_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1)
df_rfm.head()
Atas ialah kandungan terperinci Pandas+Pyecharts |. Visualisasi analisis data jualan produk elektronik + potret RFM pengguna. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!