


Pandas+Pyecharts |. Visualisasi analisis data jualan produk elektronik + potret RFM pengguna
Isu ini menggunakan Python untuk menganalisis data jualan produk elektronik, sila lihat:
pesanan setiap bulan
Pengagihan kuantiti pesanan harian
-
Kadaran pesanan pengguna lelaki dan wanita
oleh wanita/lelaki -
-
Imej RFM Pengguna
-
Perpustakaan yang terlibat:
Panda 一共有564169条数据,其中category_code、brand两列有部分数据缺失。 2.3 去掉部分用不到的列 (564169, 9) 2.4 去除重复数据 2.5 增加部分时间列 2.6 过滤数据,也可以选择均值填充 8月份的订单量和订单额达到峰值。 男性订单数量占比49.55%,女性订单数量占比50.45%,基本持平。 3.5 女性/男性购买商品TOP20 3.7 各年龄段购买商品TOP10 3.8 用户RFM等级画像 RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为(R)、购买的总体频率(F)以及花了多少钱(M)三项指标来描述该客户的价值状况,从而能够更加准确地将成本和精力更精确的花在用户层次身上,实现针对性的营销。 用户分类: 计算等级: 用户画像: 根据RFM模型可将用户分为以下8类: 重要保持客户:最近消费时间较远,消费金额和频次都很高。 Pelanggan pembangunan penting: Pengguna yang mempunyai masa penggunaan baru-baru ini dan jumlah penggunaan yang tinggi, tetapi frekuensi rendah dan kesetiaan rendah, yang berpotensi tinggi, mesti memberi tumpuan kepada pembangunan. Pengekalan pelanggan yang penting: Pengguna yang masa penggunaan baru-baru ini jauh dan kekerapan penggunaan tidak tinggi, tetapi jumlah penggunaan yang tinggi mungkin pengguna yang akan hilang atau sudah hilang, dan langkah pengekalan perlu diambil. Pelanggan nilai am: masa penggunaan baru-baru ini, frekuensi tinggi tetapi jumlah penggunaan rendah Perlu menaikkan harga unit mereka. Pelanggan pembangunan am: Masa penggunaan baru-baru ini agak baru-baru ini, dan jumlah penggunaan serta kekerapan tidak tinggi. Secara amnya mengekalkan pelanggan : Masa penggunaan baru-baru ini jauh, kekerapan penggunaan tinggi, dan jumlah penggunaan tidak tinggi.
—Pemprosesan dataPyecarts
—Penggambaran datapemprosesan data P andasimport pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import PictorialBar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import warnings
warnings.filterwarnings('ignore')
df1 = df[['event_time', 'order_id', 'category_code', 'brand', 'price', 'user_id', 'age', 'sex', 'local']]
df1.shape
df1 = df1.drop_duplicates()
df1.shape
(556456, 9)
df1['event_time'] = pd.to_datetime(df1['event_time'].str[:19],format="%Y-%m-%d %H:%M:%S")
df1['Year'] = df1['event_time'].dt.year
df1['Month'] = df1['event_time'].dt.month
df1['Day'] = df1['event_time'].dt.day
df1['hour'] = df1['event_time'].dt.hour
df1.head(10)
df1 = df1.dropna(subset=['category_code'])
df1 = df1[(df1["Year"] == 2020)&(df1["price"] > 0)]
df1.shape
(429261, 13)
2.7 对年龄分组
df1['age_group'] = pd.cut(df1['age'],[10,20,30,40,50],labels=['10-20','20-30','30-40','40-50'])
2.8 增加商品一、二级分类
df1["category_code_1"] = df1["category_code"].apply(lambda x: x.split(".")[0] if "." in x else x)
df1["category_code_2"] = df1["category_code"].apply(lambda x: x.split(".")[-1] if "." in x else x)
df1.head(10)
def get_bar1():
bar1 = (
Bar()
.add_xaxis(x_data)
.add_yaxis("订单数量", y_data1)
.extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value}万")))
.set_global_opts(
legend_opts=opts.LegendOpts(pos_top='25%', pos_left='center'),
title_opts=opts.TitleOpts(
title='1-每月订单数量订单额',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='7%',
pos_left="center"
)
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis("订单额", y_data2, yaxis_index=1)
)
bar1.overlap(line)
def get_bar2():
pie1 = (
Pie()
.add(
"",
datas,
radius=["13%", "25%"],
label_opts=opts.LabelOpts(formatter="{b}: {d}%"),
)
)
bar1 = (
Bar(init_opts=opts.InitOpts(theme='dark', width='1000px', height='600px', bg_color='#0d0735'))
.add_xaxis(x_data)
.add_yaxis("", y_data, itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)))
.set_global_opts(
legend_opts=opts.LegendOpts(is_show=False),
title_opts=opts.TitleOpts(
title='2-一月各天订单数量分布',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='7%',
pos_left="center"
)
)
)
bar1.overlap(pie1)
def get_bar3():
bar1 = (
Bar()
.add_xaxis(x_data1)
.add_yaxis('女性', y_data1,
label_opts=opts.LabelOpts(position='right')
)
.set_global_opts(
title_opts=opts.TitleOpts(
title='5-女性/男性购买商品TOP20',
subtitle='-- 制图@公众号:Python当打之年 --',
pos_top='3%',
pos_left="center"),
legend_opts=opts.LegendOpts(pos_left='20%', pos_top='10%')
)
.reversal_axis()
)
bar2 = (
Bar()
.add_xaxis(x_data2)
.add_yaxis('男性', y_data2,
label_opts=opts.LabelOpts(position='right')
)
.set_global_opts(
legend_opts=opts.LegendOpts(pos_right='25%', pos_top='10%')
)
.reversal_axis()
)
grid1 = (
Grid()
.add(bar1, grid_opts=opts.GridOpts(pos_left='12%', pos_right='50%', pos_top='15%'))
.add(bar2, grid_opts=opts.GridOpts(pos_left='60%', pos_right='5%', pos_top='15%'))
)
def rfm_func(x):
level = x.apply(lambda x:"1" if x > 0 else '0')
RMF = level.R + level.F + level.M
dic_rfm ={
'111':'重要价值客户',
'011':'重要保持客户',
'101':'重要发展客户',
'001':'重要挽留客户',
'110':'一般价值客户',
'100':'一般发展客户',
'010':'一般保持客户',
'000':'一般挽留客户'
}
result = dic_rfm[RMF]
return result
df_rfm = df1.copy()
df_rfm = df_rfm[['user_id','event_time','price']]
# 时间以当年年底为准
df_rfm['days'] = (pd.to_datetime("2020-12-31")-df_rfm["event_time"]).dt.days
# 计算等级
df_rfm = pd.pivot_table(df_rfm,index="user_id",
values=["user_id","days","price"],
aggfunc={"user_id":"count","days":"min","price":"sum"})
df_rfm = df_rfm[["days","user_id","price"]]
df_rfm.columns = ["R","F","M"]
df_rfm['RMF'] = df_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1)
df_rfm.head()
Atas ialah kandungan terperinci Pandas+Pyecharts |. Visualisasi analisis data jualan produk elektronik + potret RFM pengguna. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa