


Cara menggunakan scikit-learn untuk pembelajaran mesin
Cara menggunakan scikit-learn untuk pembelajaran mesin
Pembelajaran mesin ialah teknologi yang membolehkan komputer belajar secara automatik dan meningkatkan prestasi. Ia boleh digunakan untuk pelbagai tugas seperti klasifikasi, regresi, pengelompokan, dll. scikit-learn ialah perpustakaan pembelajaran mesin Python yang popular yang menyediakan banyak alatan dan algoritma praktikal untuk menjadikan tugas pembelajaran mesin mudah dan cekap. Artikel ini akan memperkenalkan cara menggunakan scikit-learn untuk pembelajaran mesin dan memberikan beberapa contoh kod.
Langkah pertama ialah memasang perpustakaan scikit-learn. Anda boleh memasangnya di terminal menggunakan arahan pip:
pip install scikit-learn
Selepas pemasangan selesai, anda boleh mula menggunakan scikit-learn untuk pembelajaran mesin.
Mula-mula, import perpustakaan dan modul yang diperlukan:
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import svm from sklearn import metrics
Kemudian, kita boleh menggunakan set data yang disediakan oleh scikit-learn untuk melaksanakan pembelajaran mesin. Di sini kita mengambil set data bunga iris sebagai contoh:
iris = datasets.load_iris() X = iris.data y = iris.target
X dalam set data mewakili matriks ciri dan y mewakili pembolehubah sasaran. Seterusnya, bahagikan set data kepada set latihan dan set ujian:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Kod di atas menggunakan 80% set data sebagai set latihan dan 20% sebagai set ujian.
Seterusnya, pilih algoritma pembelajaran mesin yang sesuai dan cipta model. Di sini kami mengambil Mesin Vektor Sokongan (SVM) sebagai contoh.
model = svm.SVC()
Selepas mencipta model, anda boleh menggunakan set latihan untuk melatih model:
model.fit(X_train, y_train)
Selepas latihan selesai, anda boleh menggunakan set ujian untuk menilai prestasi model:
y_pred = model.predict(X_test)
Gunakan modul metrik yang disediakan by scikit-belajar mengira ketepatan model ( ketepatan):
accuracy = metrics.accuracy_score(y_test, y_pred) print("Accuracy:", accuracy)
Selain ketepatan, penunjuk penilaian lain juga boleh digunakan untuk menilai prestasi model, seperti ketepatan, ingatan semula, dan skor F1.
Ringkasnya, langkah-langkah untuk pembelajaran mesin menggunakan scikit-learn termasuk penyediaan data, pembahagian set data, pemilihan model, model latihan dan model penilaian. scikit-learn juga menyediakan banyak fungsi dan kelas lain yang boleh digunakan untuk prapemprosesan data, pemilihan ciri, pemilihan model dan tugasan lain untuk meningkatkan lagi kesan pembelajaran mesin.
Untuk meringkaskan, artikel ini menerangkan cara menggunakan scikit-learn untuk pembelajaran mesin dan menyediakan beberapa contoh kod. Saya berharap pembaca dapat memahami lebih mendalam tentang scikit-belajar melalui artikel ini dan dapat menggunakannya secara fleksibel dalam aplikasi praktikal. Menggunakan scikit-learn untuk pembelajaran mesin boleh meningkatkan kecekapan pembangunan dan prestasi model, menyediakan alat yang berkuasa untuk saintis data dan jurutera pembelajaran mesin.
Atas ialah kandungan terperinci Cara menggunakan scikit-learn untuk pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

Python sesuai untuk pembangunan pesat dan pemprosesan data, manakala C sesuai untuk prestasi tinggi dan kawalan asas. 1) Python mudah digunakan, dengan sintaks ringkas, dan sesuai untuk sains data dan pembangunan web. 2) C mempunyai prestasi tinggi dan kawalan yang tepat, dan sering digunakan dalam pengaturcaraan permainan dan sistem.

Masa yang diperlukan untuk belajar python berbeza dari orang ke orang, terutamanya dipengaruhi oleh pengalaman pengaturcaraan sebelumnya, motivasi pembelajaran, sumber pembelajaran dan kaedah, dan irama pembelajaran. Tetapkan matlamat pembelajaran yang realistik dan pelajari terbaik melalui projek praktikal.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft