Rumah > Artikel > pembangunan bahagian belakang > Cara melakukan pemantauan trafik rangkaian dan pengesanan pencerobohan melalui Python
Cara melakukan pemantauan trafik rangkaian dan pengesanan pencerobohan melalui Python
Keselamatan rangkaian adalah tugas penting dalam era maklumat hari ini. Bagi perniagaan dan individu, adalah penting untuk mengesan dan bertindak balas terhadap pencerobohan rangkaian tepat pada masanya. Pemantauan trafik rangkaian dan pengesanan pencerobohan adalah kaedah pertahanan keselamatan yang biasa dan berkesan. Artikel ini akan memperkenalkan cara menggunakan bahasa pengaturcaraan Python untuk melaksanakan pemantauan trafik rangkaian dan pengesanan pencerobohan.
1. Konsep asas pemantauan trafik rangkaian
Pemantauan trafik rangkaian merujuk kepada proses pemantauan masa nyata dan rakaman aliran data dalam rangkaian. Dengan memantau trafik rangkaian, kami boleh memahami operasi rangkaian dan menemui serta mengesan kerosakan rangkaian. Pada masa yang sama, pencerobohan rangkaian juga boleh ditemui dalam masa dan langkah-langkah yang sepadan boleh diambil untuk pertahanan.
2. Alat pemantauan trafik rangkaian Python
Python menyediakan banyak alat dan perpustakaan untuk pemantauan trafik rangkaian. Perpustakaan yang paling biasa digunakan ialah Scapy dan dpkt.
Mula-mula anda perlu memasang perpustakaan Scapy, yang boleh dipasang melalui pip install scapy
. pip install scapy
进行安装。
下面是一个简单的使用Scapy库进行网络流量监控的示例代码:
from scapy.all import sniff def packet_callback(packet): if packet.haslayer('TCP'): print(packet.summary()) sniff(prn=packet_callback, count=10)
通过调用sniff
函数并传入一个回调函数,我们可以捕获指定数量的网络数据包,并对其进行处理。在上述代码中,我们只打印了TCP层的数据包摘要信息,具体的处理逻辑可以根据实际需求进行修改。
同样需要先安装dpkt库,可以通过pip install dpkt
进行安装。
下面是一个使用dpkt库进行网络流量监控的简单示例代码:
import pcap import dpkt def packet_callback(pkt): eth = dpkt.ethernet.Ethernet(pkt) if eth.type == dpkt.ethernet.ETH_TYPE_IP: ip = eth.data if ip.p == dpkt.ip.IP_PROTO_TCP: tcp = ip.data print(tcp) pc = pcap.pcap() pc.setfilter('tcp') pc.loop(packet_callback)
通过调用loop
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 加载数据 X, y = datasets.load_iris(return_X_y=True) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建模型 model = LogisticRegression() # 训练模型 model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test)
sniff
dan menghantar fungsi panggil balik, kami boleh menangkap bilangan paket rangkaian dan Memprosesnya. Dalam kod di atas, kami hanya mencetak maklumat ringkasan paket lapisan TCP, dan logik pemprosesan khusus boleh diubah suai mengikut keperluan sebenar.
dpktpip install dpkt
. import tensorflow as tf # 构建模型 model = tf.keras.models.Sequential([ tf.keras.layers.Dense(units=64, activation='relu', input_shape=(4,)), tf.keras.layers.Dense(units=64, activation='relu'), tf.keras.layers.Dense(units=3, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test)) # 预测 y_pred = model.predict(X_test)
gelung
dan menghantar fungsi panggil balik, kami boleh menangkap paket rangkaian dan melakukan analisis padanya berurusan dengan. Dalam kod di atas, kami hanya mencetak maklumat paket lapisan TCP Anda boleh mengubah suai logik pemprosesan mengikut keperluan sebenar. .
Untuk pengesanan pencerobohan, terdapat dua kaedah asas:
Pengesanan pencerobohan berasaskan pembelajaran mesin merujuk kepada latihan dan pembelajaran trafik rangkaian serta menggunakan algoritma pembelajaran mesin untuk membina model bagi menentukan sama ada terdapat pencerobohan. Kelebihan kaedah ini ialah ia dapat mengesan corak serangan yang tidak diketahui dengan ketepatan yang tinggi. Kelemahannya ialah ia memerlukan sejumlah besar data latihan dan sumber pengkomputeran.
Scikit-learn
Scikit-learn ialah perpustakaan pembelajaran mesin Python yang popular yang menyediakan set algoritma dan alatan pembelajaran mesin yang kaya. Dengan menggunakan Scikit-learn, kami boleh membina dan melatih model pengesanan pencerobohan.Berikut ialah contoh kod mudah untuk pengesanan pencerobohan menggunakan perpustakaan Scikit-learn:
rrreee
Atas ialah kandungan terperinci Cara melakukan pemantauan trafik rangkaian dan pengesanan pencerobohan melalui Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!