


K Algoritma jiran terdekat (KNN) ialah algoritma yang mudah dan berkesan yang boleh digunakan untuk pengelasan dan regresi. Idea asasnya adalah untuk mengenal pasti kategori kepunyaan sampel dengan mengukur jarak antara ciri yang berbeza. Dalam artikel ini, kami akan meneroka cara mengklasifikasikan KNN dalam Python.
1. Sediakan set data
Pertama, kita perlu sediakan set data. Dalam contoh ini, kami akan menggunakan set data Iris, yang mengandungi 3 bunga iris berbeza (Setosa, Versicolour dan Virginica), setiap satu dengan 4 ciri (Panjang Sepal, Lebar Sepal, Panjang Kelopak, Lebar Kelopak).
Kami akan menggunakan perpustakaan Pandas untuk membaca dan mempraproses data. Mula-mula, kita perlu mengimport pustaka yang diperlukan:
import pandas as pd import numpy as np import matplotlib.pyplot as plt
Kemudian, kami akan memuatkan set data:
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pd.read_csv(url, names=names)
Sekarang kita mempunyai set data, kita boleh mula menerokanya.
2. Visualisasi Data
Sebelum mengklasifikasikan, kita perlu memvisualisasikan dan meneroka data. Kami akan merancang plot taburan setiap ciri terhadap ciri lain, serta histogram setiap ciri. Kita boleh menggunakan perpustakaan Matplotlib dan perpustakaan Seaborn untuk visualisasi.
Petak taburan antara ciri:
import seaborn as sns sns.pairplot(dataset, hue="class")
Seperti yang dapat dilihat dari gambar ini, ciri-ciri bunga iris yang berbeza adalah sangat berbeza, yang merupakan asas untuk pengelasan.
Histogram setiap ciri:
dataset.hist() plt.show()
Seperti yang dapat dilihat daripada rajah ini, setiap ciri dalam set data mempunyai taburan yang berbeza, yang merupakan asas untuk normalisasi.
3. Prapemprosesan data
Sebelum pengelasan, kita perlu praproses data. Kita boleh membahagikan set data kepada ciri input dan kategori output, dan kemudian menskalakan nilai ciri kepada julat 0 hingga 1.
Mula-mula, kami membahagikan set data kepada ciri input dan kategori output:
X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 4].values
Kemudian, kami menskalakan nilai ciri ke julat 0 hingga 1:
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X)
Kini kami mempunyai set data praproses kami.
4. Pisahkan set data
Sebelum pengelasan, kita perlu bahagikan set data kepada set latihan dan set ujian. Kita boleh melakukan ini menggunakan fungsi train_test_split daripada perpustakaan Scikit-learn.
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Ini akan mencipta set latihan dan set ujian dengan nisbah 80:20.
5. Melatih model KNN
Kini, kita boleh mula melatih model KNN. Kami mula-mula mengimport kelas KNeighborsClassifier, mencipta contoh dan menggunakan fungsi muat untuk menyesuaikan model.
from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=5) classifier.fit(X_train, y_train)
Ini akan mencipta pengelas KNN dan melatihnya untuk mengelas menggunakan set latihan.
6. Ramalan
Kini, kita boleh menggunakan model KNN untuk membuat ramalan pada set ujian. Kami menggunakan fungsi ramalan untuk membuat ramalan dan menyimpan keputusan ke dalam pembolehubah.
y_pred = classifier.predict(X_test)
7. Penilaian Model
Akhir sekali, kami perlu menilai model kami dan menentukan ketepatannya. Kita boleh menggunakan fungsi confusion_matrix dan classification_report dalam perpustakaan Scikit-learn untuk menilai ketepatan model.
from sklearn.metrics import confusion_matrix, classification_report print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))
Ini akan mengeluarkan matriks kekeliruan dan laporan klasifikasi yang menunjukkan ketepatan model kami.
Ringkasan
Menggunakan algoritma KNN untuk pengelasan dalam Python memerlukan langkah berikut:
1 Sediakan set data
2. Prapemprosesan Data
4. Pisahkan set data
5. Melatih model KNN
6. Penilaian model
Algoritma KNN adalah algoritma yang mudah dan berkesan klasifikasi dan regresi. Menggunakan algoritma KNN untuk pengelasan dalam Python memerlukan mengikut langkah di atas. Pada masa yang sama, kami juga perlu melakukan visualisasi data dan prapemprosesan untuk memastikan model kami dapat mengelaskan dengan tepat.
Atas ialah kandungan terperinci Bagaimana untuk menggunakan algoritma KNN untuk klasifikasi dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini
