Rumah  >  Artikel  >  pangkalan data  >  Kaedah pengoptimuman indeks MySQL

Kaedah pengoptimuman indeks MySQL

WBOY
WBOYke hadapan
2023-05-28 09:20:442582semak imbas

Artikel ini terutamanya memperkenalkan "kaedah pengoptimuman indeks MySQL". Dalam operasi harian, saya percaya ramai orang mempunyai keraguan tentang kaedah pengoptimuman indeks MySQL kaedah operasi yang mudah dan mudah digunakan Saya harap ia akan membantu semua orang menjawab keraguan mereka tentang "kaedah pengoptimuman indeks MySQL"! Seterusnya, sila ikut editor untuk belajar bersama!

    1. Penyediaan data

    #1.建立员工表,并创建name,age,position索引,id为自增主键
    CREATE TABLE `employees` (
      `id` int(11) NOT NULL AUTO_INCREMENT,
      `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
      `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
      `position` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
      `hire_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
      PRIMARY KEY (`id`),
      KEY `idx_name_age_position` (`name`,`age`,`position`) USING BTREE
    ) ENGINE=InnoDB AUTO_INCREMENT=100010 DEFAULT CHARSET=utf8 COMMENT='员工记录表'
    
    # 2.前面插入三条数据,并建立employees_min_copy表插入这三条数据
    INSERT INTO employees (name,age,`position`,hire_time) VALUES 
    ('LiLei',22,'manager','2021-08-17 21:00:55')
    ,('HanMeimei',23,'dev','2021-08-17 21:00:55')
    ,('Lucy',23,'dev','2021-08-17 21:00:55')
    ;
    #3.再通过执行计划向表中插入十万条数据
    #3.1建立存储过程,往employees表中插入数据(MySQL8.0版本)
    DELIMITER $$
    USE `zhebase`$$
    DROP PROCEDURE IF EXISTS `batch_insert_employees`$$
    CREATE PROCEDURE `batch_insert_employees`(IN `start_number` BIGINT,IN `counts` BIGINT)
    BEGIN 
        DECLARE start_number BIGINT DEFAULT start_number;
        DECLARE stop_number BIGINT DEFAULT start_number;
        SET stop_number=start_number + counts;
        WHILE start_number < stop_number DO
            INSERT INTO employees(name,age,position,hire_time) VALUES(CONCAT(&#39;zhang&#39;,start_number),start_number,&#39;dev&#39;,now());
            SET start_number=start_number+1;
        END WHILE ;
        COMMIT;
    END$$
    DELIMITER ;
    
    #3.2执行存储过程插入十万条数据
    CALL batch_insert_employees(1,100000);

    2 Contoh 1

    1 . Medan yang menggunakan julat tidak akan masuk ke dalam indeks

    EXPLAIN SELECT * FROM employees WHERE name > &#39;LiLei&#39; AND age = 22 AND position =&#39;manager&#39;;

    Kaedah pengoptimuman indeks MySQL

    Sebab: MySQL secara dalaman mungkin berfikir bahawa medan pertama harus menggunakan julat, dan keputusan ditetapkan sepatutnya sangat besar, dan ia perlu Mengembalikan jadual adalah tidak cekap. Adalah lebih baik untuk terus menggunakan imbasan jadual penuh Tetapi kita boleh memaksa indeks

    EXPLAIN SELECT * FROM employees force index(idx_name_age_position) WHERE name > &#39;LiLei&#39; AND age = 22 AND position =&#39;manager&#39;;

    Kaedah pengoptimuman indeks MySQL

    -- 关闭查询缓存
    set global query_cache_size=0;
    set global query_cache_type=0;
    -- 执行时间0.321s
    SELECT * FROM employees WHERE name > &#39;LiLei&#39;;
    -- 执行时间0.458s
    SELECT * FROM employees force index(idx_name_age_position) WHERE name > &#39;LiLei&#39;;

    <.>Kaedah pengoptimuman indeks MySQL

    Pengindeksan paksa digunakan supaya carian julat medan pertama indeks bersama juga menggunakan indeks Baris yang diimbas nampaknya kurang, tetapi kecekapan carian akhir tidak semestinya lebih tinggi daripada imbasan jadual penuh, kerana kecekapan pulangan jadual tidak tinggi

    Untuk situasi ini, jika anda boleh menggunakan indeks penutup, gunakan indeks penutup untuk pengoptimuman

    EXPLAIN SELECT name,age,position FROM employees WHERE name > &#39;LiLei&#39; AND age = 22 AND position =&#39;manager&#39;;

    Kaedah pengoptimuman indeks MySQL

    2.dalam dan atau dalam data jadual Jika volumnya agak besar, indeks akan digunakan Jika tidak terdapat banyak rekod jadual, imbasan jadual penuh akan dipilih

    EXPLAIN SELECT * FROM employees
    WHERE name in (&#39;LiLei&#39;,&#39;HanMeimei&#39;,&#39;Lucy&#39;)
    AND age = 22
    AND position =&#39;manager&#39;;
    #表数据量大走索引,数据量小全表扫描
    EXPLAIN SELECT * FROM employees
    WHERE (name = &#39;LiLei&#39; or name = &#39;HanMeimei&#39;)
    AND age = 22 
    AND position =&#39;manager&#39;;

    Kaedah pengoptimuman indeks MySQL

    untuk menyalin jadual pekerja dengan seratus ribu baris data Sisipkan beberapa baris data dalam satu salinan, dan kemudian tanya

    <.>Kaedah pengoptimuman indeks MySQL dan mendapati bahawa imbasan jadual penuh telah dilakukan

    Kaedah pengoptimuman indeks MySQL

    3 .seperti xx% Tidak kira jumlah data, indeks biasanya akan digunakan

    EXPLAIN SELECT * FROM employees WHERE name like &#39;LiLei%&#39; AND age = 22 AND position =&#39;manager&#39;;

    Kaedah pengoptimuman indeks MySQL Lapisan bawah MySQL menggunakan

    Index Condition Pushdown (ICP)

    Untuk mengoptimumkan seperti xx%.

    Tekan turun indeks:

    Untuk indeks sendi tambahan (idx_name_age_position), prinsip awalan paling kiri biasanya diikuti, kerana dalam nama ialah pertanyaan julat SELECT * FROM employees WHERE name like 'LiLei%' AND age = 22 AND position ='manager', penapisan selesai Akhirnya, umur dan kedudukan tidak tertib, indeks berikutnya tidak boleh digunakan , hanya indeks medan nama akan digunakan.

    • Sebelum MySQL 5.6:

      Mula-mula padankan indeks yang namanya bermula dengan 'LiLei' dalam pepohon indeks, dan kemudian lakukan operasi pengembalian jadual berdasarkan kunci utama di bawah indeks. Pada indeks kunci utama, padankan umur dan kedudukan

    • MySQL 5.6 dan lebih baharu:

      memperkenalkan tekan turun indeks, pertama sepadan dengan indeks yang namanya bermula dengan ' LiLei' dalam pepohon indeks, dan pada masa yang sama Hakim semua medan bersyarat yang wujud dalam pangkalan data, tapis rekod yang tidak memenuhi syarat, dan kemudian kembalikan jadual untuk memadankan syarat lain dan tanya seluruh baris data .

    • Kelebihan:

      Menapis rekod yang tidak memenuhi syarat sebelum kembali ke jadual boleh mengurangkan bilangan pulangan jadual dengan berkesan dan meningkatkan kecekapan pertanyaan .

    Mengapakah carian julat MySQL tidak menggunakan pengoptimuman tekan bawah indeks?

    Ini mungkin kerana julat set hasil carian biasanya lebih besar, seperti xx% dalam kebanyakan kes, hasil yang ditetapkan selepas penapisan adalah lebih kecil. Apabila set hasil adalah besar, medan berikutnya mesti dipadankan setiap kali ia diambil, yang tidak semestinya lebih cepat daripada mengembalikan jadual dengan segera. Tetapi ia tidak mutlak Kadang-kadang Suka xx% tidak akan ditolak ke bawah indeks. 3. Bagaimanakah MySQL memilih indeks yang sesuai?

    Mari kita lihat dahulu dua pernyataan SQL:

    # MySQL直接使用全表扫描
    EXPLAIN select * from employees where name > &#39;a&#39;;
    # MySQL走索引
    EXPLAIN select * from employees where name > &#39;zzz&#39;;

    Kaedah pengoptimuman indeks MySQL Kami mendapati bahawa SQL pertama melakukan imbasan jadual penuh, dan SQL kedua telah pergi ke indeks. Selaras dengan SQL pertama, MySQL mengira kos pelaksanaan dan mendapati bahawa kos pengindeksan adalah lebih tinggi daripada imbasan penuh (pengindeksan memerlukan merentasi medan nama dan kemudian melakukan operasi pemulangan jadual untuk mencari data akhir, yang lebih perlahan daripada menanyakan secara langsung pokok indeks berkelompok). Untuk kes ini

    . Mengenai cara MySQL memilih indeks akhir, anda boleh menggunakan

    Alat Jejak 可以使用覆盖索引进行优化 untuk melihatnya. Tetapi Mendayakan alat surih akan menjejaskan prestasi MySQL dan mesti ditutup serta-merta selepas digunakan.

    #开启trace
    set session optimizer_trace="enabled=on",end_markers_in_json=on; 
    #关闭trace
    set session optimizer_trace="enabled=off";
    #使用trace
    select * from employees where name > &#39;a&#39; order by position;
    select * from information_schema.OPTIMIZER_TRACE;

    Kaedah pengoptimuman indeks MySQL

    下面是执行后的Trace中的内容:

    {
      "steps": [
        {
          #第一阶段:SQL准备阶段,格式化sql
          "join_preparation": {
            "select#": 1,
            "steps": [
              {
                "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > &#39;a&#39;) order by `employees`.`position` limit 0,200"
              }
            ] /* steps */
          } /* join_preparation */
        },
        {
          #第二阶段:SQL优化阶段
          "join_optimization": {
            "select#": 1,
            "steps": [
              {
                #条件处理
                "condition_processing": {
                  "condition": "WHERE",
                  "original_condition": "(`employees`.`name` > &#39;a&#39;)",
                  "steps": [
                    {
                      "transformation": "equality_propagation",
                      "resulting_condition": "(`employees`.`name` > &#39;a&#39;)"
                    },
                    {
                      "transformation": "constant_propagation",
                      "resulting_condition": "(`employees`.`name` > &#39;a&#39;)"
                    },
                    {
                      "transformation": "trivial_condition_removal",
                      "resulting_condition": "(`employees`.`name` > &#39;a&#39;)"
                    }
                  ] /* steps */
                } /* condition_processing */
              },
              {
                "substitute_generated_columns": {
                } /* substitute_generated_columns */
              },
              {
                #表依赖详情
                "table_dependencies": [
                  {
                    "table": "`employees`",
                    "row_may_be_null": false,
                    "map_bit": 0,
                    "depends_on_map_bits": [
                    ] /* depends_on_map_bits */
                  }
                ] /* table_dependencies */
              },
              {
                "ref_optimizer_key_uses": [
                ] /* ref_optimizer_key_uses */
              },
              {
                #预估表的访问成本
                "rows_estimation": [
                  {
                    "table": "`employees`",
                    "range_analysis": {
                      "table_scan": { --全表扫描情况
                        "rows": 93205, --扫描行数
                        "cost": 9394.9 --查询成本
                      } /* table_scan */,
                      #查询可能使用的索引
                      "potential_range_indexes": [
                        {
                          "index": "PRIMARY",  --主键索引
                          "usable": false, -- 是否使用
                          "cause": "not_applicable"
                        },
                        {
                          #辅助索引
                          "index": "idx_name_age_position",
                          "usable": true,
                          "key_parts": [
                            "name",
                            "age",
                            "position",
                            "id"
                          ] /* key_parts */
                        }
                      ] /* potential_range_indexes */,
                      "setup_range_conditions": [
                      ] /* setup_range_conditions */,
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_group_by_or_distinct"
                      } /* group_index_range */,
                      "skip_scan_range": {
                        "potential_skip_scan_indexes": [
                          {
                            "index": "idx_name_age_position",
                            "usable": false,
                            "cause": "query_references_nonkey_column"
                          }
                        ] /* potential_skip_scan_indexes */
                      } /* skip_scan_range */,
                      #分析各个索引使用成本
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                          {
                            "index": "idx_name_age_position",
                            "ranges": [
                              "a < name" --索引使用范围
                            ] /* ranges */,
                            "index_dives_for_eq_ranges": true, 
                            "rowid_ordered": false, --使用该索引获取的记录是否按照主键排序
                            "using_mrr": false, 
                            "index_only": false, --是否使用覆盖索引
                            "rows": 46602, --索引扫描行数
                            "cost": 16311, --索引使用成本
                            "chosen": false, --是否选择该索引
                            "cause": "cost"
                          }
                        ] /* range_scan_alternatives */,
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        } /* analyzing_roworder_intersect */
                      } /* analyzing_range_alternatives */
                    } /* range_analysis */
                  }
                ] /* rows_estimation */
              },
              {
                "considered_execution_plans": [
                  {
                    "plan_prefix": [
                    ] /* plan_prefix */,
                    "table": "`employees`",
                    "best_access_path": { --最优访问路径
                      "considered_access_paths": [ --最终选择的访问路径
                        {
                          "rows_to_scan": 93205,
                          "filtering_effect": [
                          ] /* filtering_effect */,
                          "final_filtering_effect": 0.5,
                          "access_type": "scan", --访问类型:为scan,全表扫描
                          "resulting_rows": 46602,
                          "cost": 9392.8,
                          "chosen": true  --确定选择
                        }
                      ] /* considered_access_paths */
                    } /* best_access_path */,
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 46602,
                    "cost_for_plan": 9392.8,
                    "chosen": true
                  }
                ] /* considered_execution_plans */
              },
              {
                "attaching_conditions_to_tables": {
                  "original_condition": "(`employees`.`name` > &#39;a&#39;)",
                  "attached_conditions_computation": [
                    {
                      "table": "`employees`",
                      "rechecking_index_usage": {
                        "recheck_reason": "low_limit",
                        "limit": 200,
                        "row_estimate": 46602
                      } /* rechecking_index_usage */
                    }
                  ] /* attached_conditions_computation */,
                  "attached_conditions_summary": [
                    {
                      "table": "`employees`",
                      "attached": "(`employees`.`name` > &#39;a&#39;)"
                    }
                  ] /* attached_conditions_summary */
                } /* attaching_conditions_to_tables */
              },
              {
                "optimizing_distinct_group_by_order_by": {
                  "simplifying_order_by": {
                    "original_clause": "`employees`.`position`",
                    "items": [
                      {
                        "item": "`employees`.`position`"
                      }
                    ] /* items */,
                    "resulting_clause_is_simple": true,
                    "resulting_clause": "`employees`.`position`"
                  } /* simplifying_order_by */
                } /* optimizing_distinct_group_by_order_by */
              },
              {
                "reconsidering_access_paths_for_index_ordering": {
                  "clause": "ORDER BY",
                  "steps": [
                  ] /* steps */,
                  "index_order_summary": {
                    "table": "`employees`",
                    "index_provides_order": false,
                    "order_direction": "undefined",
                    "index": "unknown",
                    "plan_changed": false
                  } /* index_order_summary */
                } /* reconsidering_access_paths_for_index_ordering */
              },
              {
                "finalizing_table_conditions": [
                  {
                    "table": "`employees`",
                    "original_table_condition": "(`employees`.`name` > &#39;a&#39;)",
                    "final_table_condition   ": "(`employees`.`name` > &#39;a&#39;)"
                  }
                ] /* finalizing_table_conditions */
              },
              {
                "refine_plan": [
                  {
                    "table": "`employees`"
                  }
                ] /* refine_plan */
              },
              {
                "considering_tmp_tables": [
                  {
                    "adding_sort_to_table_in_plan_at_position": 0
                  } /* filesort */
                ] /* considering_tmp_tables */
              }
            ] /* steps */
          } /* join_optimization */
        },
        {
          #第三阶段:SQL执行阶段
          "join_execution": {
            "select#": 1,
            "steps": [
              {
                "sorting_table_in_plan_at_position": 0,
                "filesort_information": [
                  {
                    "direction": "asc",
                    "table": "`employees`",
                    "field": "position"
                  }
                ] /* filesort_information */,
                "filesort_priority_queue_optimization": {
                  "limit": 200,
                  "chosen": true
                } /* filesort_priority_queue_optimization */,
                "filesort_execution": [
                ] /* filesort_execution */,
                "filesort_summary": {
                  "memory_available": 262144,
                  "key_size": 40,
                  "row_size": 186,
                  "max_rows_per_buffer": 201,
                  "num_rows_estimate": 285696,
                  "num_rows_found": 100003,
                  "num_initial_chunks_spilled_to_disk": 0,
                  "peak_memory_used": 38994,
                  "sort_algorithm": "std::stable_sort",
                  "unpacked_addon_fields": "using_priority_queue",
                  "sort_mode": "<fixed_sort_key, additional_fields>"
                } /* filesort_summary */
              }
            ] /* steps */
          } /* join_execution */
        }
      ] /* steps */
    }

    由 Trace字段可知,全表扫描的 cost_for_plan = 9394.9 小于使用索引 cost_for_plan = 16311,故最终选择全表扫描。

    4.常见 SQL 深入优化

    4.1.Order by与Group by优化

    # 案例1
    explain select * from employees where name = &#39;Lucy&#39; and position = &#39;dev&#39; order by age;

    分析:  案例1 由最左前缀法则分析出索引中间不能出现断层,只使用了 name 索引前缀,也可以从key_len = 3n + 2 看出。age 索引列用在排序过程中,因为Extra字段里没有 Using filesort 而是 Using index condition 。 

    Kaedah pengoptimuman indeks MySQL

    #案例2
    explain select * from employees where name = &#39;Lucy&#39;  order by position;

    分析:  案例2 索引查询使用了 name 索引前缀,但排序由于跳过了 age 所以Extra字段出现了 Using filesort 。

    #案例3
    explain select * from employees where name = &#39;Lucy&#39;  order by age, position;

    Kaedah pengoptimuman indeks MySQL

    分析:  案例3 查询时使用了 name 索引,age 和 postion 用于排序,不会出现 Using filesort

    #案例4
    explain select * from employees where name = &#39;Lucy&#39;  order by position,age;

    Kaedah pengoptimuman indeks MySQL

    分析:  案例4 查询时使用了 name 索引,age 和 postion 顺序与创建索引树不一致,出现了 Using filesort

    Kaedah pengoptimuman indeks MySQL

    #案例5
    explain
    select * from employees
    where name = &#39;Lucy&#39;
    and age = 22
    order by position,age;

    Kaedah pengoptimuman indeks MySQL

    分析:  案例5 查询时使用了 name 索引,age 和 postion 顺序与创建索引树不一致,但 name、age 为常量,MySQL 会自动优化,不会出现 Using filesort

    #案例6
    explain select * from employees where name = &#39;Lucy&#39; order byage,position desc;

    Kaedah pengoptimuman indeks MySQL

    分析:  案例6 排序顺序一样,但 order by 默认升序,导致与索引的排序方式不同,出现了 Using filesort 。 MySQL8.0 以上版本有降序索引可以支持这种查询。

    #案例7
    explain select * from employees where name = &#39;Lucy&#39; or name = &#39;LiLei&#39; order by age;

    Kaedah pengoptimuman indeks MySQL

     分析:  案例7 对于排序来说,多个相等条件也是范围查询,出现了 Using filesort 。

    #案例8
    #SQL-1
    explain select * from employees where name > &#39;zzz&#39; order by name;
    #SQL-2
    explain select * from employees where name > &#39;a&#39; order by name;

    Kaedah pengoptimuman indeks MySQL

      分析:  案例8 原因同前面的例子,可以使用覆盖索引优化。

    MySQL排序总结:

    1、MySQL支持两种方式的排序 filesort 和 indexUsing index是指MySQL扫描索引本身完成排序。Using filesort 是指MySQL扫描聚簇索引(整张表)进行排序。index效率高,filesort效率低。

    2、order by 满足两种情况会使用 Using index(不绝对)

    • a.order by 语句使用索引最左前列。

    • b.使用 where 子句与 order by 子句条件列组合满足索引最左前列。

    3、尽量在索引列上完成排序,遵循最左前缀法则。

    4、如果 order by 的条件不在索引列上,就会产生Using filesort。

    5、能用覆盖索引尽量用覆盖索引

    6、group by 与 order by 很类似,其实质是先排序后分组(group by 底层:先执行一次 order by 再进行分组),遵照索引创建顺序的最左前缀法则。对于group by的优化如果不需要排序的可以加上order by null 禁止排序。注意,where高于having能写在where中的限定条件就不要去having限定了

    Using filesort 文件排序原理 filesort文件排序方式有:

    • 单路排序是一次性取出满足条件行的所有字段,然后在 sort buffer 中进行排序。用trace工具得到sort_mode信息显示或者

    • 双路排序(又叫回表排序模式) :先根据相应的条件取出相应的排序字段和可以直接定位行数据的行 ID,然后在 sort buffer 中进行排序,排序完后需要再次取回其它需要的字段。用trace工具得到sort_mode信息显示

    MySQL 通过比较系统变量 max_length_for_sort_data(默认1024字节) 的大小和需要查询的字段总大小来判断使用哪种排序模式。

    • 字段的总长度

    • 字段的总长度 >max_length_for_sort_data ,使用双路排序

     select * from employees where name = &#39;Lucy&#39; order by position;
    "join_execution": {    --Sql执行阶段
            "select#": 1,
            "steps": [
              {
                "filesort_information": [
                  {
                    "direction": "asc",
                    "table": "`employees`",
                    "field": "position"
                  }
                ] /* filesort_information */,
                "filesort_priority_queue_optimization": {
                  "usable": false,
                  "cause": "not applicable (no LIMIT)"
                } /* filesort_priority_queue_optimization */,
                "filesort_execution": [
                ] /* filesort_execution */,
                "filesort_summary": {                      --文件排序信息
                  "rows": 10000,                           --预计扫描行数
                  "examined_rows": 10000,                  --参与排序的行
                  "number_of_tmp_files": 3,                --使用临时文件的个数,如果为0代表全部使用的sort_buffer内存排序,否则使用的磁盘文件排序
                  "sort_buffer_size": 262056,              --排序缓存的大小,单位Byte
                  "sort_mode": "<sort_key, packed_additional_fields>"       --排序方式,此处是路排序
                } /* filesort_summary */
              }
            ] /* steps */
          } /* join_execution */

    单路排序会把所有需要查询的字段都放到 sort buffer 中排序,而双路排序只会把主键和需要排序的字段放到 sort buffer 中进行排序,然后再通过主键回到原表查询需要的字段。

    单路排序过程:

    • a.从索引 name 找到第一个满足 name = 'Lucy' 条件的主键 id

    • b.回表根据主键 id 取出整行,取出所有字段的值,存入 sort_buffer 中

    • c.从索引name找到下一个满足 name = 'Lucy' 条件的主键 id

    • d.重复步骤 2、3 直到不满足 name = 'Lucy'

    • e.对 sort_buffer 中的数据按照字段 position 进行排序

    • f.返回结果

    双路排序过程:

    • a.从索引 name 找到第一个满足 name ='Lucy' 的主键 id

    • b.根据主键 id 取出整行,把排序字段 position 和主键 id 这两个字段放到 sort buffer 中

    • c.从索引 name 取下一个满足 name = 'Lucy' 记录的主键 id

    • d.重复 3、4 直到不满足 name = 'Lucy'

    • e.对 sort_buffer 中的字段 position 和主键 id 按照字段 position 进行排序

    • f.遍历排序好的 id 和字段 position,按照 id 的值回到原表中取出所有字段的值返回

    4.2.分页查询优化

     select * from employees limit 10000,10

    这条 SQL 语句实际查询了 10010 条记录,然后丢弃了前面的 10000 条记录,所以,在 数据量很大时,执行效率是非常非常低的。一般需要对分页查询进行优化。 优化方法: 1.根据自增且连续的主键排序的分页查询

     select * from employees where id > 90000 limit 5;

    当一个表的主键连续且自增时,可以使用该方法进行优化,但如果自增不连续会造成数据丢失

    2.根据非主键字段排序的分页查询

    #优化前
    select * from employees ORDER BY name limit 90000,5;
    #优化后
    select * from employees e 
    inner join (select id from employees order by name limit 90000,5) ed 
    on e.id = ed.id;

    先通过排序和分页操作先查出主键,然后根据主键查出对应的记录。 

    Kaedah pengoptimuman indeks MySQL

    4.3.join关联查询优化

    4.3.1.数据准备
    #示例表
    # 创建t1,t2表,主键id,单值索引a
    CREATE TABLE `t1` (
      `id` int(11) NOT NULL AUTO_INCREMENT,
      `a` int(11) DEFAULT NULL,
      `b` int(11) DEFAULT NULL,
      PRIMARY KEY (`id`),
      KEY `idx_a` (`a`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
    create table t2 like t1;
    #存储过程往t1,t2表插入数据
    DELIMITER $$
    USE `zhebase`$$
    DROP PROCEDURE IF EXISTS `batch_insert_t1`$$
    CREATE PROCEDURE `batch_insert_t1`(IN `start_number` BIGINT,IN `counts` BIGINT)
    BEGIN 
        DECLARE start_number BIGINT DEFAULT start_number;
        DECLARE stop_number BIGINT DEFAULT start_number;
        SET stop_number=start_number + counts;
        WHILE start_number < stop_number DO
            INSERT INTO t1(a,b) VALUES(start_number,start_number); 
            SET start_number=start_number+1; 
        END WHILE ; 
        COMMIT; 
    END$$
    DELIMITER ;
    DELIMITER $$
    USE `zhebase`$$
    DROP PROCEDURE IF EXISTS `batch_insert_t2`$$
    CREATE PROCEDURE `batch_insert_t2`(IN `start_number` BIGINT,IN `counts` BIGINT)
    BEGIN 
        DECLARE start_number BIGINT DEFAULT start_number;
        DECLARE stop_number BIGINT DEFAULT start_number;
        SET stop_number=start_number + counts;
        WHILE start_number < stop_number DO
            INSERT INTO t2(a,b) VALUES(start_number,start_number); 
            SET start_number=start_number+1; 
        END WHILE ; 
        COMMIT; 
    END$$
    DELIMITER ;
    #执行存储过程往t1表插入10000条记录,t2表插入100条记录
    CALL batch_insert_t1(1,10000);
    CALL batch_insert_t2(1,100);
    4.3.2.MySQL 表关联常见的两种算法
    • 嵌套循环连接 Nested-Loop Join(NLJ) 算法

    • 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法

    • 通常,当MySQL查询被驱动表的关联字段没有索引时,会采用BNL算法进行关联查询。当存在索引时,通常会选择NLJ算法,因为 NLJ 算法在有索引的情况下比 BNL 算法效率更高

    1.嵌套循环连接 Nested-Loop Join(NLJ) 算法 原理:一次一行循环地从第一张表(驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动表)里取出满足条件的行,然后取出两张表的结果合集。

    explain select * from t1 inner join t2 on t1.a= t2.a;

    Kaedah pengoptimuman indeks MySQL

     从执行计划可以了解的信息:

    • a.驱动表是 t2,被驱动表是 t1( inner join 时 SQL优化器会小表驱动大表,外连接则根据连接类型区分)

    • b.使用了 NLJ 算法。如果执行计划 Extra 中未出现 Using join buffer 则表示使用的 join 算法是 NLJ

    整个过程会读取 t2 表的所有数据(扫描100行),然后遍历这每行数据中字段 a 的值,根据 t2 表中 a 的值索引扫描 t1 表中的对应行(扫描100次 t1 表的索引,1次扫描可以认为最终只扫描 t1 表一行完整数据,也就是总共 t1 表也扫描了100行)。因此整个过程扫描了 200 行 。

    2. 基于块的嵌套循环连接 Block Nested-Loop Join(BNL)算法 原理:把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比

    explain select * from t1 inner join t2 on t1.b= t2.b;

    Kaedah pengoptimuman indeks MySQL

     整个过程对表 t1 和 t2 都做了一次全表扫描,因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的数据总量) = 10100。并且 join_buffer 里的数据是无序的,因此对表 t1 中的每一行,都要做 100 次判断,所以内存中的判断次数是 100 * 10000= 100 万次(非扫描次数) 。 注意: join_buffer 的大小是由参数 join_buffer_size 控制,默认256k。如果 t2 放不下就会使用分段策略(先从 t2 表取出部分数据,比对完就清空 join_buffer,再重新拿出来余下的部分进行比对)。

    被驱动表的关联字段无索引为什么要选择使用 BNL 算法而不使用 NLJ 算法?          如第二条 SQL,如果使用 NLJ 算法扫描行数为 100 * 10000 = 100万,这个是磁盘扫描。使用 BNL 算法仅需扫描 100100 行。

    对于表关联 SQL 的优化

    • 尽量少关联(在阿里规范中,关联表不能超过三种,可以后端代码单独查询,循环关联)

    • 小表驱动大表,写多表连接 SQL 时如果明确知道哪张表是小表可以用straight_join写法固定连接驱动方式,节约 MySQL 优化器判断时间.select * from t2 straight_join t1 on t2.a = t1.a; 代表指定mysql选着 t2 表作为驱动表

    • 关联字段加索引,大表关联字段一定要加索引,尽量使得 MySQL 在进行 join 操作时选择NLJ算法

    • 多表连接是非常难以优化的,最好95%的场景都使用单表来完成,复杂场景交个JAVA代码,大规模计算交给大数据工具,无需效率才考虑连接

    4.4.in和exsits优化

    原则:小表驱动大表

    # in 先执行括号里面的
    select * from A where id in (select id from B)  
    #exists 先执行括号外面的
    #select * 可以用 select 1 替换,没有区别
    #exists 子查询内部会进行优化,并非逐条对比
    #exists 子查询往往也可以用 jion 来代替,何种最优需要具体问题具体分析
    select * from A where exists (select 1 from B where B.id = A.id)

    4.5.count(*)查询优化

    注意:根据某个字段 count 不会统计字段为 null 的行

    #扫描二级索引,按行累加
    explain select count(1) from employees;
    #扫描辅助索引按行累加(辅助索引比聚簇索引小)
    explain select count(id) from employees;
    #把 name 拿到内存,不为 null 就累加
    explain select count(name) from employees;
    #不取值,按行累加
    explain select count(*) from employees;

    四条语句的效率几乎可以忽略,效率对比如下: 字段有索引: count(* )≈count(1)>count(字段)>count(主键 id) 段)>count(主键 id)  字段无索引: count(*)≈count(1)>count(主键 id)>count(字段)

    常见优化方法:

    • 1.对于 MyISAM 存储引擎的表做不带 where 条件的 count 查询性能是很高的,数据总行数直接写在磁盘上,查询不需要计算。innodb 存储引擎的表则不会记录(因为有MVCC机制)

    • 2.对与不用知道确切行的可以直接使用show table status,它是一个估值,使用该查询效率很高

    • 3.将总数维护到 Redis 里面,插入或删除表数据行的时候同时维护 Redis 里的表总行数 key 的计数值(用 incr 或 decr 命令),但是这种方式可能不准,很难保证表操作和Redis 操作的事务一致性。

    • 4.增加数据库计数表,插入或删除表数据行的时候同时维护计数表,且它们在同一个事务里操作

    5.索引设计原则

    • 1、代码先行,索引后上,先开发完主体业务代码,再把涉及到该表相关sql都要拿出来分析之后再建立索引。

    • 2、联合索引尽量覆盖条件,可以设计一个或者两三个联合索引(单值索引要少建),让每一个联合索引都尽量去包含SQL语句里的 where、order by、group by 的字段,且这些联合索引字段顺序尽量满足 SQL查询的最左前缀原则。

    • 3、不要在小基数字段上建立索引,无法进行快速的二分查找,不能能发挥出B+树快速二分查找的优势来,没有意义

    • 4、尽量对字段类型较小的列设计索引,尽量对字段类型较小的列设计索引,比如 Tinyint 之类,字段类型较小的话,占用磁盘空间小,搜索的时性能更好。

    • 5、长字符串可以采用前缀索引,比如针对某个字段的前20个字符建立索引,即:每个值的前20个字符放入索引树中,搜索时会先匹配前而是个字符,再回表到聚簇索引取出来完整的 name 字段值进行比较。但排序(order by 和 group by)时无法使用该索引。

    • 6、where 与 order by 冲突时优先 where,大多数情况下根据索引进行 where 筛选一般筛选出来的数据比较少,然后做排序成本会更低。

    • 7 Optimumkan berdasarkan pertanyaan SQL yang perlahan Anda boleh memantau beberapa SQL yang perlahan di latar belakang dan melakukan pengoptimuman indeks khusus untuk pertanyaan SQL yang perlahan ini (MySQL menyediakannya, hanya Tetapkan. parameter tertentu).

    Atas ialah kandungan terperinci Kaedah pengoptimuman indeks MySQL. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

    Kenyataan:
    Artikel ini dikembalikan pada:yisu.com. Jika ada pelanggaran, sila hubungi admin@php.cn Padam