


Bagaimana untuk melakukan gabungan model dan pemampatan model dalam PHP?
Dengan perkembangan pesat kecerdasan buatan, kerumitan model semakin tinggi dan lebih tinggi, dan penggunaan sumber juga semakin meningkat. Dalam PHP, cara melakukan gabungan model dan pemampatan model telah menjadi topik hangat.
Paduan model merujuk kepada menggabungkan beberapa model tunggal bersama-sama untuk meningkatkan ketepatan dan kecekapan keseluruhan. Pemampatan model mengurangkan saiz dan kerumitan pengiraan model untuk menjimatkan storan model dan sumber pengkomputeran. Artikel ini akan memperkenalkan cara melakukan gabungan model dan pemampatan model dalam PHP.
1. Gabungan model
Dalam PHP, terdapat dua kaedah gabungan model yang biasa digunakan: bagging dan boosting.
- Bagging
Bagging ialah singkatan daripada Bootstrap Agregating Ia diperoleh dengan mensampel set latihan, melatih berbilang model dan menghasilkan purata hasil model ini keputusan ramalan akhir. Iaitu, N sampel latihan disampel semula M kali, dengan atau tanpa penggantian dalam setiap persampelan, jadi setiap set data yang diperoleh dengan pensampelan semula mungkin berbeza. Dengan cara ini, setiap model boleh dilatih pada data yang berbeza, dengan itu mengurangkan varians model dan meningkatkan ketepatan keseluruhan.
Dalam PHP, algoritma pembungkusan yang biasa digunakan ialah hutan rawak. Hutan rawak ialah algoritma bagging berdasarkan pepohon keputusan Ia menggunakan pepohon keputusan berbilang untuk mengklasifikasikan set latihan dan undian pada keputusan pepohon keputusan berbilang untuk mendapatkan hasil ramalan akhir.
- Boosting
Boosting ialah kaedah menimbang set latihan, melatih berbilang model dan menimbang purata model ini untuk mendapatkan kaedah hasil ramalan akhir. Ia akan menumpukan pada sampel yang salah dalam set data latihan untuk meningkatkan ketepatan keseluruhan.
Dalam PHP, algoritma Boosting yang biasa digunakan termasuk Adaboost dan Gradient Boosting. Adaboost ialah algoritma lelaran yang meningkatkan berat data salah klasifikasi berdasarkan keputusan pusingan latihan sebelumnya supaya pusingan latihan seterusnya dapat mengenal pasti data salah klasifikasi ini dengan lebih baik. Gradient Boosting ialah lanjutan daripada algoritma Boosting untuk pepohon keputusan Ia secara berulang melatih pepohon keputusan yang berbeza dan menimbang keputusan pepohon keputusan berbilang untuk mendapatkan hasil ramalan akhir.
2. Pemampatan model
Dalam PHP, terdapat dua kaedah pemampatan model yang biasa digunakan: kuantisasi dan pemangkasan.
- Kuantisasi
Kuantisasi ialah kaedah menukar parameter titik terapung dalam model kepada parameter titik tetap, dengan itu mengurangkan storan dan sumber pengkomputeran model. Kuantisasi dibahagikan kepada kuantisasi berat dan nilai pengaktifan.
Dalam PHP, algoritma kuantisasi yang biasa digunakan termasuk kuantisasi berat berdasarkan norma L2 dan kuantisasi nilai pengaktifan berdasarkan perbezaan KL. Pengkuantitian berat berdasarkan norma L2 menukarkan pemberat titik terapung kepada integer yang lebih kecil, dengan itu mengurangkan ruang penyimpanan model. Kuantifikasi nilai pengaktifan berdasarkan perbezaan KL menukarkan pengagihan nilai pengaktifan kepada pengagihan seragam atau pengagihan deterministik, dengan itu mengurangkan jumlah pengiraan model.
- Pemangkasan
Pemangkasan merujuk kepada mengurangkan kerumitan pengiraan dan ruang penyimpanan model dengan memadam beberapa bahagian model yang tidak perlu atau tidak berguna. Pemangkasan biasa termasuk pemangkasan struktur, pemangkasan berat dan pemangkasan dinamik.
Dalam PHP, algoritma pemangkasan yang biasa digunakan termasuk pemangkasan struktur L1 berdasarkan faktor penormalan dan pemangkasan berat L2 berdasarkan saiz berat. Pemangkasan struktur L1 menormalkan neuron dan memadam beberapa neuron yang tidak berguna atau berlebihan, dengan itu mengurangkan ruang penyimpanan model dan kerumitan pengiraan. Pemangkasan berat L2 mengurangkan ruang penyimpanan model dan kerumitan pengiraan dengan memadamkan beberapa pemberat yang lebih kecil. Prun pemangkasan dinamik berdasarkan keadaan operasi sebenar model, dengan itu mengurangkan lagi penggunaan sumber model sambil mengekalkan ketepatan.
Kesimpulan
Melaksanakan gabungan model dan pemampatan model dalam PHP boleh mengurangkan storan dan sumber pengkomputeran model dengan berkesan. Melalui pengenalan artikel ini, kita boleh belajar tentang gabungan model dan kaedah pemampatan model yang biasa digunakan, dan mencubanya dalam amalan. Saya harap artikel ini dapat memberikan sedikit bantuan kepada pembangun PHP yang mempelajari tentang pengoptimuman model.
Atas ialah kandungan terperinci Bagaimana untuk melakukan gabungan model dan pemampatan model dalam PHP?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PHP tetap penting dalam pembangunan web moden, terutamanya dalam pengurusan kandungan dan platform e-dagang. 1) PHP mempunyai ekosistem yang kaya dan sokongan rangka kerja yang kuat, seperti Laravel dan Symfony. 2) Pengoptimuman prestasi boleh dicapai melalui OPCACHE dan NGINX. 3) Php8.0 memperkenalkan pengkompil JIT untuk meningkatkan prestasi. 4) Aplikasi awan asli dikerahkan melalui Docker dan Kubernet untuk meningkatkan fleksibiliti dan skalabiliti.

PHP sesuai untuk pembangunan web, terutamanya dalam pembangunan pesat dan memproses kandungan dinamik, tetapi tidak baik pada sains data dan aplikasi peringkat perusahaan. Berbanding dengan Python, PHP mempunyai lebih banyak kelebihan dalam pembangunan web, tetapi tidak sebaik python dalam bidang sains data; Berbanding dengan Java, PHP melakukan lebih buruk dalam aplikasi peringkat perusahaan, tetapi lebih fleksibel dalam pembangunan web; Berbanding dengan JavaScript, PHP lebih ringkas dalam pembangunan back-end, tetapi tidak sebaik JavaScript dalam pembangunan front-end.

PHP dan Python masing -masing mempunyai kelebihan sendiri dan sesuai untuk senario yang berbeza. 1.PHP sesuai untuk pembangunan web dan menyediakan pelayan web terbina dalam dan perpustakaan fungsi yang kaya. 2. Python sesuai untuk sains data dan pembelajaran mesin, dengan sintaks ringkas dan perpustakaan standard yang kuat. Apabila memilih, ia harus diputuskan berdasarkan keperluan projek.

PHP adalah bahasa skrip yang digunakan secara meluas di sisi pelayan, terutamanya sesuai untuk pembangunan web. 1.PHP boleh membenamkan HTML, memproses permintaan dan respons HTTP, dan menyokong pelbagai pangkalan data. 2.PHP digunakan untuk menjana kandungan web dinamik, data borang proses, pangkalan data akses, dan lain -lain, dengan sokongan komuniti yang kuat dan sumber sumber terbuka. 3. PHP adalah bahasa yang ditafsirkan, dan proses pelaksanaan termasuk analisis leksikal, analisis tatabahasa, penyusunan dan pelaksanaan. 4.Php boleh digabungkan dengan MySQL untuk aplikasi lanjutan seperti sistem pendaftaran pengguna. 5. Apabila debugging php, anda boleh menggunakan fungsi seperti error_reporting () dan var_dump (). 6. Mengoptimumkan kod PHP untuk menggunakan mekanisme caching, mengoptimumkan pertanyaan pangkalan data dan menggunakan fungsi terbina dalam. 7

Sebab mengapa PHP adalah timbunan teknologi pilihan untuk banyak laman web termasuk kemudahan penggunaannya, sokongan komuniti yang kuat, dan penggunaan yang meluas. 1) Mudah dipelajari dan digunakan, sesuai untuk pemula. 2) Mempunyai komuniti pemaju yang besar dan sumber yang kaya. 3) Digunakan secara meluas dalam platform WordPress, Drupal dan lain -lain. 4) Mengintegrasikan dengan ketat dengan pelayan web untuk memudahkan penggunaan pembangunan.

PHP kekal sebagai alat yang kuat dan digunakan secara meluas dalam pengaturcaraan moden, terutamanya dalam bidang pembangunan web. 1) PHP mudah digunakan dan diintegrasikan dengan lancar dengan pangkalan data, dan merupakan pilihan pertama bagi banyak pemaju. 2) Ia menyokong penjanaan kandungan dinamik dan pengaturcaraan berorientasikan objek, sesuai untuk membuat dan mengekalkan laman web dengan cepat. 3) Prestasi PHP dapat ditingkatkan dengan caching dan mengoptimumkan pertanyaan pangkalan data, dan komuniti yang luas dan ekosistem yang kaya menjadikannya masih penting dalam timbunan teknologi hari ini.

Dalam PHP, rujukan lemah dilaksanakan melalui kelas lemah dan tidak akan menghalang pemungut sampah daripada menebus objek. Rujukan lemah sesuai untuk senario seperti sistem caching dan pendengar acara. Harus diingat bahawa ia tidak dapat menjamin kelangsungan hidup objek dan pengumpulan sampah mungkin ditangguhkan.

Kaedah \ _ \ _ membolehkan objek dipanggil seperti fungsi. 1. Tentukan kaedah \ _ \ _ supaya objek boleh dipanggil. 2. Apabila menggunakan sintaks $ OBJ (...), PHP akan melaksanakan kaedah \ _ \ _ invoke. 3. Sesuai untuk senario seperti pembalakan dan kalkulator, meningkatkan fleksibiliti kod dan kebolehbacaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Dreamweaver Mac版
Alat pembangunan web visual