


Para saintis menyasarkan untuk menemui formula bermakna yang menerangkan data percubaan dengan tepat. Model matematik fenomena semula jadi boleh dibuat secara manual berdasarkan pengetahuan domain, atau ia boleh dibuat secara automatik daripada set data besar menggunakan algoritma pembelajaran mesin. Komuniti akademik telah mengkaji masalah penggabungan pengetahuan terdahulu yang berkaitan dan model fungsi yang berkaitan, dan percaya bahawa mencari model yang selaras dengan pengetahuan terdahulu mengenai aksiom logik am adalah masalah yang tidak dapat diselesaikan.
Penyelidik daripada pasukan penyelidik IBM dan pasukan AI Samsung membangunkan kaedah "AI-Descartes" yang menggabungkan penaakulan logik dengan regresi simbolik untuk mengekstrak data daripada pengetahuan aksiomatik dan data eksperimen dalam derivasi prinsip model fenomena alam.
Penyelidikan yang bertajuk "Menggabungkan data dan teori untuk penemuan saintifik boleh terbit dengan AI-Descartes", diterbitkan pada 12 April 2023 dalam "Nature Komunikasi》.
Rangkaian saraf tiruan (NN) dan regresi statistik sering digunakan untuk menemui corak dan perhubungan dalam data secara automatik. NN mengembalikan model "kotak hitam" di mana fungsi asas biasanya digunakan hanya untuk ramalan. Dalam regresi standard, bentuk kefungsian telah ditetapkan, jadi penemuan model berjumlah pada pemasangan parameter. Dalam regresi simbolik (SR), bentuk fungsian tidak ditentukan terlebih dahulu tetapi terdiri daripada operator (cth., +, -, ×, dan ÷) daripada senarai yang diberikan dan dikira daripada data.
Model SR biasanya lebih "boleh ditafsir" berbanding model NN dan memerlukan kurang data. Oleh itu, untuk menemui undang-undang semula jadi secara simbolik daripada data eksperimen, SR mungkin lebih berkesan daripada NN atau regresi bentuk tetap, penyepaduan NN dan SR telah menjadi subjek penyelidikan terkini dalam AI neurosimbolik; Cabaran utama dalam SR ialah mengenal pasti model yang bermakna secara saintifik daripada banyak model yang sesuai dengan data. Para saintis mentakrifkan fungsi yang bermakna sebagai fungsi yang mengimbangi ketepatan dan kerumitan. Walau bagaimanapun, banyak ungkapan sedemikian wujud untuk set data tertentu, dan tidak semuanya konsisten dengan teori latar belakang yang diketahui.
Pendekatan lain ialah bermula dengan teori latar belakang yang diketahui, tetapi pada masa ini tiada alat inferens praktikal yang boleh menjana teorem yang konsisten dengan data eksperimen daripada set aksiom yang diketahui. Automatic Theorem Provers (ATP) ialah alat penaakulan yang paling banyak digunakan yang boleh membuktikan tekaan untuk teori logik tertentu. Kerumitan pengiraan adalah cabaran utama untuk ATP untuk beberapa jenis logik, membuktikan sangkaan tidak dapat ditentukan.
Tambahan pula, mendapatkan model daripada teori logik menggunakan alat penaakulan formal amat sukar apabila operator aritmetik dan kalkulus terlibat. Teknik pembelajaran mesin telah digunakan untuk meningkatkan prestasi ATP, contohnya, dengan menggunakan pembelajaran pengukuhan untuk membimbing proses carian.
Model boleh terbitan bukan sahaja harus tepat secara empirik, tetapi model tersebut harus bersifat ramalan dan berwawasan.
Penyelidik dari pasukan penyelidik IBM dan pasukan Samsung AI cuba mendapatkan model sedemikian dengan menggabungkan kaedah SR berasaskan pengoptimuman matematik baharu dengan sistem inferens. Ini menghasilkan sistem penemuan hujung ke hujung "AI-Descartes" yang mengekstrak formula daripada data melalui SR dan kemudian memberikan bukti terbitan formula daripada set aksiom, atau memberikan bukti ketidakkonsistenan. Apabila model terbukti tidak boleh terbit, penyelidik mencadangkan langkah baharu yang menunjukkan betapa hampir formula itu dengan formula terbitan, dan menggunakan sistem inferens mereka untuk mengira nilai ukuran ini.
Ilustrasi: Gambaran keseluruhan sistem. (Sumber: kertas)
Dalam kerja awal menggabungkan pembelajaran mesin dengan inferens, saintis menggunakan penerangan berasaskan logik untuk mengekang output seni bina saraf GAN yang menjana imej. Terdapat juga pasukan yang menggabungkan alat pembelajaran mesin dan enjin inferens untuk mencari bentuk berfungsi yang memenuhi kekangan yang telah ditetapkan. Ini adalah untuk menambah set data awal dengan mata baharu, sekali gus meningkatkan kecekapan kaedah pembelajaran dan ketepatan model akhir. Sesetengah pasukan juga memanfaatkan pengetahuan sedia ada untuk mencipta titik data tambahan. Walau bagaimanapun, kajian ini hanya mempertimbangkan kekangan pada bentuk fungsian untuk dipelajari dan tidak termasuk aksiom teori latar belakang umum (kekangan logik yang menerangkan undang-undang lain dan pembolehubah tidak terukur yang terlibat dalam fenomena).
Cristina Cornelio, pengarang utama kertas kerja dan saintis penyelidikan di Samsung AI, berkata AI-Descartes menawarkan beberapa kelebihan berbanding sistem lain, tetapi ciri yang paling membezakannya ialah ia keupayaan penaakulan logik. Jika terdapat berbilang persamaan calon yang sesuai dengan data dengan baik, sistem mengenal pasti persamaan yang paling sesuai dengan teori saintifik latar belakang. Keupayaan untuk menaakul juga membezakan sistem daripada program "AI generatif" seperti ChatGPT, yang model bahasanya yang besar mempunyai keupayaan logik yang terhad dan kadangkala bercelaru dengan matematik asas.
"Dalam kerja kami, kami menggabungkan kaedah prinsip pertama dengan kaedah dipacu data yang lebih biasa dalam era pembelajaran mesin, yang telah digunakan oleh saintis selama berabad-abad. "Gabungan ini membolehkan kami memanfaatkan kedua-dua pendekatan dan mencipta model yang lebih tepat dan bermakna untuk pelbagai aplikasi." >
Nama AI-Descartes ialah penghormatan kepada ahli matematik dan ahli falsafah abad ke-17, René Descartes, yang percaya bahawa dunia semula jadi boleh digambarkan oleh beberapa undang-undang fizikal asas dan kesimpulan logik memainkan peranan penting dalam penemuan saintifik.
Ilustrasi: Penjelasan kaedah saintifik pelaksanaan sistem. (Sumber: Kertas)
Penyelidik dari pasukan ini telah menunjukkan bahawa menggabungkan penaakulan logik dengan regresi simbolik adalah sangat bernilai dalam mendapatkan model simbolik yang bermakna bagi fenomena fizikal konsisten dengan teori latar belakang dan umumkan dengan baik kepada domain yang jauh lebih besar daripada data eksperimen. Gabungan regresi dan inferens menghasilkan model yang lebih baik daripada sama ada SR atau inferens logik sahaja.Penambahbaikan atau penggantian komponen sistem individu dan pengenalan modul baharu, seperti penaakulan abduktif atau reka bentuk eksperimen akan mengembangkan fungsi keseluruhan sistem. Penyepaduan inferens dan regresi yang lebih mendalam boleh membantu mensintesis model berasaskan data dan berasaskan prinsip pertama dan membawa kepada revolusi dalam proses penemuan saintifik. Menemui model yang konsisten dengan pengetahuan sedia ada akan mempercepatkan penemuan saintifik dan mengatasi paradigma penemuan sedia ada.
Pasukan menggunakan model untuk menyimpulkan undang-undang ketiga pergerakan planet Kepler, undang-undang pelebaran masa relativistik Einstein, dan teori penjerapan Langmuir menunjukkan bahawa apabila penaakulan logik digunakan untuk Apabila membezakan formula calon dengan ralat serupa pada data, model boleh menemui corak dominan daripada sebilangan kecil titik data.
Ilustrasi: Visualisasi set berkaitan dan jaraknya. (Sumber: kertas)
"Dalam karya ini, kita memerlukan pakar manusia untuk menulis dalam cara yang formal dan boleh dibaca komputer apakah aksiom teori latar belakang, jika Jika manusia terlepas salah satu daripada mereka atau salah satu daripadanya, sistem itu tidak akan berfungsi," kata Tyler Josephson, penolong profesor kimia, biokimia dan kejuruteraan alam sekitar di UMBC. "Pada masa hadapan, kami juga berharap untuk mengautomasikan bahagian ini kerja supaya kita boleh menerokai lebih banyak bidang sains dan kejuruteraan 》Akhirnya, pasukan berharap AI-Descartes mereka dapat memberi inspirasi kepada pendekatan saintifik baharu yang produktif, sama seperti saintis sebenar. "Salah satu aspek yang paling menarik dalam kerja kami ialah potensi untuk kemajuan yang ketara dalam penyelidikan saintifik," kata Cornelio.
Pautan kertas: https://www.nature.com/articles/s41467-023-37236-y Laporan berkaitan: https://techxplore.com/news/2023-04-ai-scientist-combines-theory-scientific.html
Atas ialah kandungan terperinci 'Saintis AI” baharu menggabungkan teori dan data untuk menemui persamaan saintifik. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular
