cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana untuk melaksanakan pemacu data ddt Unittest Python

1. Pengenalan dipacu data:

  • @ddt.ddt (penghias kelas, mengisytiharkan bahawa kelas semasa menggunakan rangka kerja ddt)

  • @ ddt.data (penghias fungsi, digunakan untuk menghantar data ke kes ujian), menyokong menghantar semua jenis data python: nombor (int, long, float, compix), rentetan, senarai, tupel, set, menulis dan membaca data Fail fungsi, @parameter kemasukan data tambah * untuk membaca

  • @ddt.unpack (surat kepada penghias untuk membongkar paket data yang dihantar), biasanya digunakan pada tupel dan tupel Senarai, kamus ( nama dan bilangan parameter perlu konsisten dengan kekunci kamus) (tidak diperlukan untuk tatasusunan dan rentetan)

  • @ddt.file_data (penghias fungsi, boleh dibaca terus Ambil yaml/json file)

2 Perbezaan antara pemacu data dan pemacu utama:

Ujian Terpacu Data (DDT) ialah ujian dipacu data, yang boleh. melaksanakan data yang berbeza Jalankan kes ujian yang sama. Intipati ddt sebenarnya adalah penghias, satu set data dan adegan.
Didorong kata kunci (teras: merangkum logik perniagaan ke dalam log masuk kata kunci, hanya perlu memanggil log masuk.)

3 Mod pemacu hibrid (didorong kata kunci + dipacu data)

4. Dalam keadaan sebenar. ujian dipacu data: anda perlu menggunakan penghias @ddt.ddt pada kelas ujian dan penghias @ddt.data pada kes ujian.

(1) Parameter tunggal: pakej panduan - tulis parameter (senarai, nombor, rentetan) -----Tetapkan penghias @ddt.data untuk menulis nama parameter----Kaedah Tulis parameter formal *data----panggil kandungan parameter

(2) Ujian dipacu data berbilang parameter (satu parameter ujian mengandungi berbilang elemen): Pakej panduan - set @ddt decoration Peranti——Set @unpack untuk unpack&mdash ;—Tulis parameter——Pemindahan parameter formal——Panggil

(3) pemindahan parameter fail txt

(4 ) lulus parameter fail json

(5) parameter fail yaml lulus

(6) lulus parameter fail xlsx

Nota: parameter pembolehubah diluluskan dalam Python: * mewakili jenis Senarai bacaan berjujukan, ** mewakili jenis objek bacaan berjujukan (kamus ), klik untuk membaca bahagian parameter pembolehubah untuk mengetahui tentang mekanisme yang berkaitan

# 1、单一参数的数据驱动
 
# 前置步骤:
# 使用语句import unittest导入测试框架
# 使用语句from ddt import ddt, data导入单一参数的数据驱动需要的包
 
# 示例会执行三次test,参数分别为'666','777','888'
import ddt
import unittest
@ddt.ddt  # 设置@ddt装饰器
class BasicTestCase(unittest.TestCase):
    @ddt.data('666', '777', '888')  # 设置@data装饰器,并将传入参数写进括号
    def test(self, *data):  # test入口设置形参
        print('数据驱动的number:', data)
# 程序会执行三次测试,入口参数分别为666、777、888
 
 
        
# 2、多参数的数据驱动
# 在单一参数包的基础上,额外导入一个unpack的包,from ddt import ddt, data, unpack
# 步骤:导包——设置@ddt装饰器——设置@unpack解包——写入参数——形参传递——调用
import ddt
import unittest
 
Testdata = [
    {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
    {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
    {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
    {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
]
 
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    
    #方式一:直接将列表放到data
    @ddt.data(['张三', '18'], ['李四', '19'])  # 设置@data装饰器,并将同一组参数写进中括号[]
    @ddt.unpack  # 设置@unpack装饰器顺序解包,缺少解包则相当于name = ['张三', '18']
    def test(self, name, age):
        print('姓名:', name, '年龄:', age)
# 程序会执行两次测试,入口参数分别为['张三', '18'],['李四', '19']
 
        
    #方式二:写一个列表后,使用*访问列表到data
    @ddt.data(*Testdata)
    @ddt.unpack # 设置@unpack装饰器顺序解包
    def test_DataDriver(self, *Data):
        #print('DDT数据驱动实战演示:', Data)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
        
 
#3、 txt文件接收参数
# 新建num文件,txt格式
    # (1)单一参数按行存储777,888,999
    # (2)多参数txt文件
        # dict文件内容(参数列表)(按行存储):
        # 张三,18
        # 李四,19
# 编辑阅读数据文件的函数
# 记住读取文件一定要设置编码方式,否则读取的汉字可能出现乱码!!!!!!
import ddt
import unittest
def read_num():
    lis = []    # 以列表形式存储数据,以便传入@data区域
    with open('num.txt', 'r', encoding='utf-8') as file:    # 以只读'r',编码方式为'utf-8'的方式,打开文件'num',并命名为file
        for line in file.readlines():   # 循环按行读取文件的每一行
            lis.append(line.strip('\n'))  #单一参数,每读完一行将此行数据加入列表元素,记得元素要删除'/n'换行符!!!
            #lis.append(line.strip('\n').split(','))  # 多参驱动,删除换行符,根据,分割后,列表为['张三,18', '李四,19', '王五,20']
        return lis    # 将列表返回,作为@data接收的内容
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_num())  # 入口参数设定为read_num(),因为返回值是列表,所以加*表示逐个读取列表元素
    #txt表格有多少个值,设置多少个接收参数的形参
    def test(self, name,age):
        print('数据驱动的number:', name,age)
 
 
# 4、JSON文件传参:数据分离
# 多参数——json文件
# 步骤和单一参数类似,仅需加入@unpack装饰器以及多参数传参入口
# dict文件内容(参数列表)(非规范json文件格式):
# 单一参数:["666","777","888"]
# 多个参数:[["张三", "18"], ["李四", "19"], ["王五", "20"]]
# 注意json文件格式字符串用双引号
import ddt
import unittest
import json
def read_dict_json():
    return json.load(open('dict.json', 'r', encoding='utf-8'))  # 使用json包读取json文件,并作为返回值返回
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_dict_json())
    @ddt.unpack     # 使用@unpack装饰器解包
    def test(self, name, age):    # 因为是非规范json格式,所以形参名无限制,下文会解释规范json格式
        print('姓名:', name, '年龄:', age)
    
 
# 4、JSON文件传参:数据分离
# json文件三种形式:
# (1)单一参数:["666","777","888"]
# (2)多个参数:[["张三", "18"], ["李四", "19"], ["王五", "20"]]
# (3)JSON格式读取,每一组参数以对象形式存储:
# [
#   {"name":"张三", "age":"18"},
#   {"name":"李四", "age":"19"},
#   {"name":"王五", "age":"20"}
# ]
# 单一参数时无需使用unpack,多参数需要使用unpack解包,注意json文件格式字符串用双引号
import ddt
import unittest
import json
 
#方式1:非正式json格式使用
def read_dict_json():
    return json.load(open('dict.json', 'r', encoding='utf-8'))  # 使用json包读取json文件,并作为返回值返回
 
#方式2:JSON格式读取,提取已读完后的json文件(字典形式),通过遍历获取元素,并返回
def read_dict_json():
    lis = []
    dic = json.load(open('dict.json', 'r', encoding='utf-8'))
    # 此处加上遍历获取语句,下文yaml格式有实例,方法一样
    for item in dic:
        lis.append(item)
    return lis
 
@ddt.ddt
class BasicTestCase(unittest.TestCase):
    @ddt.data(*read_dict_json())
    @ddt.unpack     # 使用@unpack装饰器解包
    def test(self, name, age):    # 因为是非规范json格式,所以形参名无限制,下文会解释规范json格式
        print('姓名:', name, '年龄:', age)
 
 
#5、多参数yaml
# 以对象形式存储yml数据(字典)
# yaml格式文件内容
# -
#   name: 张三
#   age: 18
# -
#   name: 李四
#   age: 19
# -
#   name: 王五
#   age: 20
# '-'号之后一定要打空格!!!
# ':'号之后一定要打空格!!!
 
# 入口参数与数据参数key命名统一即可导入
import ddt
import unittest
import yaml
@ddt.ddt
class BasicTestCase(unittest.TestCase):
 
    #方式1:形参入口和数据参数key命名统一
    @ddt.file_data('./data/dict.yml')
    def test(self, name, age):  # 设置入口参数名字与数据参数命名相同即可
        print('姓名是:', name, '年龄为:', age)
 
    #方式2:入口参数与数据参数命名不统一
    @ddt.file_data('./data/dict.yml')
    def test(self, **cdata):  # Python中可变参数传递的知识:**按对象顺序执行
        print('姓名是:', cdata['name'], '年龄为:', cdata['age'])    # 通过对象访问语法即可调用

Contohnya adalah seperti berikut:

Kaedah 1: Data ujian ditulis terus dalam bentuk senarai, Gunakan ddt. data(*Data) untuk menghantar nilai

##2.12.2  DDT在自动化测试中的应用(传列表)
 
import ddt
import unittest
 
# 给4条测试数据
    Testdata = [
        {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
        {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
    ]
@ddt.ddt
class TestModules(unittest.TestCase):
    def setUp(self):
        print('testcase beaning....')
    def tearDown(self):
        print('testcase ending.....')
        
    @ddt.data(*Data)
    def test_DataDriver(self,Data):
        #print('DDT数据驱动实战演示:',Testdata)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
if __name__ == '__main__':
    unittest.main()

Kaedah 2: Tulis data ke borang kaedah readData(), gunakan ddt.data(*readData()) untuk menghantar nilai

import ddt
import unittest
 
# 给4条测试数据
def readData():
    Testdata = [
        {"username": "admin", "password": "123456", "excepted": {'code': '200', 'msg': '登录成功'}},
        {"username": None, "password": "1234567", "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": None, "excepted": {'code': '400', 'msg': '用户名或密码不能为空'}},
        {"username": "admin", "password": "123456789", "excepted": {'code': '404', 'msg': '用户名或密码错误'}},
    ]
    return TestData
 
@ddt.ddt
class TestModules(unittest.TestCase):
    def setUp(self):
        print('testcase beaning....')
    def tearDown(self):
        print('testcase ending.....')
    @ddt.data(*readData())
    def test_DataDriver(self,Data):
        #print('DDT数据驱动实战演示:',Testdata)
        res = login.login_check(Testdata['username'], Testdata['password'])
        self.assertEqual(res, Testdata['excepted'])
if __name__ == '__main__':
    unittest.main()

Atas ialah kandungan terperinci Bagaimana untuk melaksanakan pemacu data ddt Unittest Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:亿速云. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Bagaimana tatasusunan digunakan dalam pengkomputeran saintifik dengan python?Apr 25, 2025 am 12:28 AM

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Bagaimana anda mengendalikan versi python yang berbeza pada sistem yang sama?Apr 25, 2025 am 12:24 AM

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apakah beberapa kelebihan menggunakan array numpy melalui array python standard?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Bagaimanakah sifat tatasusunan homogen mempengaruhi prestasi?Apr 25, 2025 am 12:13 AM

Kesan homogenitas tatasusunan pada prestasi adalah dwi: 1) homogenitas membolehkan pengkompil untuk mengoptimumkan akses memori dan meningkatkan prestasi; 2) tetapi mengehadkan kepelbagaian jenis, yang boleh menyebabkan ketidakcekapan. Singkatnya, memilih struktur data yang betul adalah penting.

Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apakah beberapa amalan terbaik untuk menulis skrip python yang boleh dilaksanakan?Apr 25, 2025 am 12:11 AM

ToCraftExecutablePythonscripts, ikutiTheseBestPractics: 1) addAshebangline (#!/Usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3)

Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Bagaimanakah array numpy berbeza dari tatasusunan yang dibuat menggunakan modul array?Apr 24, 2025 pm 03:53 PM

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Bagaimanakah penggunaan array Numpy berbanding dengan menggunakan array modul array di Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Bagaimanakah modul CTYPES berkaitan dengan tatasusunan di Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft