A new thread pool plugin is now a part of the MySQL Enterprise Edition.
In this blog we will cover the problem that the thread pool is solving
and some high-level description of how it solves this problem.
In the traditional MySQL server model there is a one-to-one mapping between
thread and connection. Even the MySQL server has lots of code where thread
or some abbreviation of thread is actually representing a connection.
Obviously this mapping has served MySQL very well over the years, but there
are some cases where this model don't work so well.
One such case is where there are much more connections executing queries
simultaneously compared to the number of CPUs available in the server. The
MySQL Server also have scalability bottlenecks where performance suffers
when too many connections execute in parallel.
So effectively there are two reasons that can make performance suffer in
the original MySQL Server model.
The first is that many connections executing in parallel means that the
amount of data that the CPUs work on increases. This will decrease the
CPU cache hit rates. Lowering the CPU cache hit rate can have a significant
negative impact on server performance. Actually in some cases the amount
of memory allocated by the connections executing in parallel could at times
even supersede the memory available in the server. In this case we enter a
state called swapping which is very detrimental to performance.
The second problem is that the number of parallel queries and transactions
can have a negative impact on the throughput through the "critical sections"
of the MySQL Server (critical section is where mutexes are applied to
ensure only one CPU changes a certain data structure at a time, when such
a critical section becomes a scalability problem we call it a hot spot).
Statements that writes are more affected since they use more critical
sections.
Neither of those problems can be solved in the operating system scheduler.
However there are some operating systems that have attempted solving this
problem for generic applications on a higher level in the operating system.
Both of those problems have the impact that performance suffers more and
more as the number of statements executed in parallel increases.
In addition there are hot spots where the mutex is held for a longer time
when many concurrent statements and/or transactions are executed in
parallel. One such example is the transaction list in InnoDB where each
transaction is listed in a linked list. Thus when the number of concurrent
transactions increases the time to scan the list increases and the time
holding the lock increases and thus the hot spot becomes even hotter
as the concurrency increases.
Current solutions to these issues exist in InnoDB through use of the
configuration parameter --innodb-thread-concurrency. When this parameter
is set to a nonzero value, this indicates how many threads are
able to run through InnoDB code concurrently. This solution have its
use cases where it works well. It does however have the drawback that
the solution itself contains a hot spot that limits the MySQL server
scalability. It does also not contain any solution to limiting the
number of concurrent transactions.
In a previous alpha version of the MySQL Server (MySQL 6.0) a thread
pool was developed. This thread pool solved the problem with limiting
the number of concurrent threads executing. It did nothing to solve
the problem with limiting the number of concurrent transactions.
It was also a scalability bottleneck in itself. Finally it didn't
solve all issues regarding long queries and blocked queries.
This made it possible for the MySQL Server to become completely
blocked.
When developing the thread pool extension now available in the MySQL
Enterprise Edition we decided to start from a clean plate with the
following requirements:
1) Limit the number of concurrently executing statements to ensure
that each statement execution has sufficient CPU and memory resources
to fulfill its task.
2) Split threads and connection into thread groups that are
independently managed. This is to ensure that the thread pool
plugin itself doesn't become a scalability bottleneck. The
aim is that each thread group has one or zero active threads
at any point in time.
3) Limit the number of concurrently executing transactions
through prioritizing queued connections dependent on if
they have started a transaction or not.
4) Avoid deadlocks when a statement execution becomes long or
when the statement is blocked for some reason for an extended
time.
If you are interested in knowing more details of how the new
thread pool solves these requirements there will be a
webinar on Thursday 20 Oct 2011 at 9.00 PDT. Check here
for details on how to access it.
If you want to try out the thread pool go here.
参考:
http://mikaelronstrom.blogspot.ae/2011/10/mysql-thread-pool-problem-definition.html

MySQL menggunakan lesen GPL. 1) Lesen GPL membolehkan penggunaan percuma, pengubahsuaian dan pengedaran MySQL, tetapi taburan yang diubah suai mesti mematuhi GPL. 2) Lesen komersial boleh mengelakkan pengubahsuaian awam dan sesuai untuk aplikasi komersil yang memerlukan kerahsiaan.

Keadaan ketika memilih innoDB dan bukannya myisam termasuk: 1) sokongan transaksi, 2) persekitaran konkurensi tinggi, 3) konsistensi data yang tinggi; Sebaliknya, keadaan apabila memilih myisam termasuk: 1) terutamanya membaca operasi, 2) Tiada sokongan transaksi diperlukan. InnoDB sesuai untuk aplikasi yang memerlukan konsistensi data yang tinggi dan pemprosesan urus niaga, seperti platform e-dagang, manakala MyISAM sesuai untuk aplikasi bacaan dan bebas transaksi seperti sistem blog.

Di MySQL, fungsi kunci asing adalah untuk mewujudkan hubungan antara jadual dan memastikan konsistensi dan integriti data. Kekunci asing mengekalkan keberkesanan data melalui pemeriksaan integriti rujukan dan operasi cascading. Perhatikan pengoptimuman prestasi dan elakkan kesilapan biasa apabila menggunakannya.

Terdapat empat jenis indeks utama dalam MySQL: Indeks B-Tree, Indeks Hash, Indeks Teks Penuh dan Indeks Spatial. 1. B-Tree Index sesuai untuk pertanyaan, penyortiran dan pengelompokan, dan sesuai untuk penciptaan pada lajur Nama Jadual Pekerja. 2. Indeks hash sesuai untuk pertanyaan yang setara dan sesuai untuk penciptaan pada lajur ID jadual hash_table enjin penyimpanan memori. 3. Indeks teks penuh digunakan untuk carian teks, sesuai untuk penciptaan pada lajur kandungan jadual artikel. 4. Indeks spatial digunakan untuk pertanyaan geospatial, sesuai untuk penciptaan pada lajur geom jadual lokasi.

TOCREATEANINDEXINMYSQL, USETHECreateIndexStatement.1) forasingLecolumn, gunakan "createIndexidx_lastNameonemployees (lastName);" 2) foracompositeIndex, gunakan "createindexidx_nameonemployees (lastName, firstName)

Perbezaan utama antara MySQL dan SQLite adalah konsep reka bentuk dan senario penggunaan: 1. MySQL sesuai untuk aplikasi besar dan penyelesaian peringkat perusahaan, menyokong prestasi tinggi dan kesesuaian yang tinggi; 2. SQLITE sesuai untuk aplikasi mudah alih dan perisian desktop, ringan dan mudah dibenamkan.

Indeks dalam MySQL adalah struktur yang diperintahkan satu atau lebih lajur dalam jadual pangkalan data, yang digunakan untuk mempercepat pengambilan data. 1) Indeks meningkatkan kelajuan pertanyaan dengan mengurangkan jumlah data yang diimbas. 2) Indeks B-Tree menggunakan struktur pokok yang seimbang, yang sesuai untuk pertanyaan dan penyortiran pelbagai. 3) Gunakan pernyataan createIndex untuk membuat indeks, seperti createIndexidx_customer_idonorders (customer_id). 4) Indeks komposit boleh mengoptimumkan pertanyaan berbilang lajur, seperti createIndexidx_customer_orderonorders (customer_id, order_date). 5) Gunakan Jelaskan untuk menganalisis rancangan pertanyaan dan elakkan

Menggunakan transaksi dalam MySQL memastikan konsistensi data. 1) Mulakan transaksi melalui starttransaction, dan kemudian laksanakan operasi SQL dan serahkannya dengan komit atau rollback. 2) Gunakan SavePoint untuk menetapkan titik simpan untuk membolehkan rollback separa. 3) Cadangan Pengoptimuman Prestasi termasuk memendekkan masa urus niaga, mengelakkan pertanyaan berskala besar dan menggunakan tahap pengasingan yang munasabah.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Dreamweaver Mac版
Alat pembangunan web visual

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Dreamweaver CS6
Alat pembangunan web visual
