Dua senario aplikasi utama pembelajaran mesin - regresi dan klasifikasi
Regresi dan klasifikasi ialah dua jenis masalah pembelajaran mesin yang paling biasa, seperti yang ditunjukkan dalam rajah di bawah.
Masalah regresi biasanya digunakan untuk meramalkan nilai yang nilai labelnya berterusan. Contohnya, ramalkan sebarang aliran dan nilai berterusan seperti harga rumah dan cuaca masa hadapan. Algoritma regresi yang lebih biasa ialah algoritma regresi linear dan rangkaian saraf dalam pembelajaran mendalam.
Masalah pengelasan adalah untuk melabelkan sesuatu dengan label kategori, dan hasilnya ialah nilai diskret, yang merupakan pilihan dalam kategori Contohnya, menentukan sama ada haiwan pada gambar adalah kucing atau anjing . Pengelasan termasuk klasifikasi binari dan klasifikasi multivariate, dan hanya terdapat satu hasil akhir yang betul untuk setiap kelas. Pengelasan ialah bidang aplikasi klasik pembelajaran mesin Banyak algoritma pembelajaran mesin boleh digunakan untuk pengelasan, termasuk algoritma regresi logistik yang paling asas, algoritma pepohon keputusan klasik dan rangkaian saraf dalam pembelajaran mendalam. Terdapat juga masalah klasifikasi berbilang label yang diperoleh daripada klasifikasi berbilang kategori Aplikasi biasa termasuk pelabelan automatik nama apabila memuat naik foto di tapak rangkaian sosial dan sistem pengesyoran - mengesyorkan berbilang produk kepada pengguna yang sama pada tapak web atau apl, atau Mengesyorkan. produk tertentu kepada berbilang pengguna.
Senario aplikasi pembelajaran mesin yang lain
Sudah tentu, sebagai tambahan kepada masalah regresi dan masalah klasifikasi, terdapat banyak senario aplikasi pembelajaran mesin. Sebagai contoh, masalah pengelompokan yang paling biasa dalam pembelajaran tanpa penyeliaan adalah untuk membahagikan data kepada kelompok yang berbeza mengikut sifat ciri mereka tanpa label (sebenarnya, ia adalah pengelasan data satu lagi jenis pembelajaran tanpa pengawasan ialah Peraturan perkaitan yang mempengaruhi perhubungan antara ciri boleh didapati.
Contoh lain ialah siri masa, yang merujuk kepada set data yang struktur dalamannya sentiasa berubah mengikut masa, seperti data aliran, data yang berubah mengikut musim, dsb. Masalah siri masa sebenarnya adalah masalah regresi yang berkait rapat dengan masa dan tempoh. Senario aplikasi khusus termasuk meramalkan turun naik pasaran kewangan, membuat kesimpulan aktiviti suria, air pasang, cuaca dan juga kelahiran bintang dan pembentukan galaksi, meramalkan penyebaran penyakit wabak, dsb.
Terdapat juga output berstruktur. Biasanya pembelajaran mesin mengeluarkan jawapan atau pilihan, tetapi kadangkala perlu untuk mengeluarkan struktur melalui pembelajaran. Apakah maksudnya? Sebagai contoh, dalam pengecaman pertuturan, mesin mengeluarkan ayat Ayat tersebut mempunyai struktur standard, bukan hanya nombor 0 hingga 9 (mengenali 0 hingga 9 adalah masalah klasifikasi. Senario aplikasi khusus termasuk pengecaman pertuturan - mengeluarkan ayat dengan struktur tatabahasa yang betul dan terjemahan mesin - mengeluarkan artikel yang mematuhi peraturan.
Terdapat juga beberapa masalah pembelajaran mesin yang matlamatnya bukan untuk menyelesaikan masalah, tetapi untuk menjadikan dunia lebih berwarna Oleh itu, AI juga boleh melaksanakan kerja yang dilakukan oleh artis, seperti berikut. Dreamwork Google boleh menggabungkan gaya dua gambar untuk penghijrahan gaya artistik. Rangkaian musuh generatif GAN boleh mencipta gambar yang palsu dan nyata. Melombong ruang terpendam vektor ciri digital untuk mencipta muzik, berita, cerita, dsb.
Kami boleh memanggil aplikasi pembelajaran generatif pembelajaran mesin ini.
Ada kalanya juga matlamat pembelajaran mesin adalah untuk membuat keputusan, yang dipanggil masalah membuat keputusan. Masalah membuat keputusan pada dasarnya masih merupakan masalah klasifikasi, kerana setiap keputusan sebenarnya mengklasifikasikan keadaan persekitaran tertentu menggunakan tingkah laku yang paling sesuai. Contohnya, arah (kiri, tengah, kanan) dalam pemanduan autonomi dan titik pendaratan di Go masih merupakan salah satu daripada kategori 19×19. Senario aplikasi khusus termasuk pemanduan autonomi, ejen pintar bermain permainan, robot bermain catur, dsb. Dalam banyak masalah membuat keputusan, mesin mesti mempelajari keputusan mana yang berkesan dan boleh membawa ganjaran, keputusan mana yang tidak berkesan dan akan membawa pulangan negatif, dan mana yang bermanfaat untuk matlamat jangka panjang. Oleh itu, pembelajaran pengukuhan adalah teknik biasa dalam kes ini.
Secara amnya, helah pembelajaran mesin ialah memahami masalah anda sendiri dan memilih kaedah pembelajaran mesin (algoritma) terbaik untuk masalah anda, iaitu untuk mencari teknologi mana yang paling sesuai untuk masalah ini. . Jika anda boleh menyambungkan senario atau tugasan dengan teknologi yang sesuai, anda boleh mempunyai idea apabila anda menghadapi masalah dan mencari penyelesaian dengan cepat. Rajah di bawah menghubungkan beberapa senario aplikasi pembelajaran mesin biasa dan model pembelajaran mesin
Atas ialah kandungan terperinci Apakah aplikasi pembelajaran mesin?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pengenalan Dalam kejuruteraan segera, "Grafik Pemikiran" merujuk kepada pendekatan baru yang menggunakan teori graf untuk struktur dan membimbing proses penalaran AI. Tidak seperti kaedah tradisional, yang sering melibatkan linear

Pengenalan Tahniah! Anda menjalankan perniagaan yang berjaya. Melalui laman web anda, kempen media sosial, webinar, persidangan, sumber percuma, dan sumber lain, anda mengumpul 5000 ID e -mel setiap hari. Langkah jelas seterusnya adalah

Pengenalan Dalam persekitaran pembangunan perisian pantas hari ini, memastikan prestasi aplikasi yang optimum adalah penting. Memantau metrik masa nyata seperti masa tindak balas, kadar ralat, dan penggunaan sumber dapat membantu utama

"Berapa banyak pengguna yang anda ada?" Dia ditakdirkan. "Saya fikir kali terakhir yang kami katakan ialah 500 juta aktif mingguan, dan ia berkembang dengan pesat," jawab Altman. "Anda memberitahu saya bahawa ia seperti dua kali ganda dalam beberapa minggu sahaja," kata Anderson. "Saya mengatakan bahawa priv

Pengenalan Mistral telah mengeluarkan model multimodal yang pertama, iaitu Pixtral-12B-2409. Model ini dibina atas parameter 12 bilion Mistral, NEMO 12B. Apa yang membezakan model ini? Ia kini boleh mengambil kedua -dua gambar dan Tex

Bayangkan mempunyai pembantu berkuasa AI yang bukan sahaja memberi respons kepada pertanyaan anda tetapi juga mengumpulkan maklumat, melaksanakan tugas, dan juga mengendalikan pelbagai jenis teks, imej, dan kod. Bunyi futuristik? Dalam ini a

Pengenalan Industri kewangan adalah asas kepada mana -mana pembangunan negara, kerana ia memacu pertumbuhan ekonomi dengan memudahkan urus niaga yang cekap dan ketersediaan kredit. The ease with which transactions occur and credit

Pengenalan Data dijana pada kadar yang belum pernah terjadi sebelumnya dari sumber seperti media sosial, urus niaga kewangan, dan platform e-dagang. Mengendalikan aliran maklumat yang berterusan ini adalah satu cabaran, tetapi ia menawarkan


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)