Rumah >Java >javaTutorial >Cara menggunakan pengaturcaraan ejen Unicode di Java
Akses berjujukan ialah operasi asas untuk memproses rentetan dalam bahasa Java. Di bawah pendekatan ini, setiap aksara dalam rentetan input diakses secara berurutan dari awal hingga akhir, atau kadangkala dari akhir ke awal. Bahagian ini membincangkan tujuh contoh teknikal untuk mencipta tatasusunan titik kod 32-bit daripada rentetan menggunakan kaedah capaian berjujukan dan menganggarkan masa pemprosesannya.
Contoh 1-1: Penanda Aras (tiada sokongan untuk pasangan pengganti)
Penyenaraian 1 Menetapkan secara langsung nilai jenis char 16-bit kepada nilai titik kod 32-bit , tiada langsung Pertimbangkan pasangan pengganti:
Penyenaraian 1. Tiada sokongan untuk pasangan pengganti
int[] toCodePointArray(String str) { // Example 1-1 int len = str.length(); // the length of str int[] acp = new int[len]; // an array of code points for (int i = 0, j = 0; i <p>Walaupun contoh ini tidak menyokong pasangan pengganti, ia menyediakan garis dasar masa pemprosesan untuk membandingkan urutan berikutnya Lawati contoh. </p><p><strong>Contoh 1-2: Menggunakan isSurrogatePair()</strong></p><p>Penyenaraian 2 Gunakan isSurrogatePair() untuk mengira jumlah bilangan pasangan pengganti. Selepas mengira, ia memperuntukkan memori yang mencukupi untuk tatasusunan bit kod untuk menyimpan nilai. Ia kemudian memasuki gelung akses berjujukan, menggunakan isHighSurrogate() dan isLowSurrogate() untuk menentukan sama ada setiap aksara pasangan pengganti ialah pengganti tinggi atau rendah. Apabila ia menemui pengganti tinggi diikuti oleh pengganti rendah, ia menggunakan toCodePoint() untuk menukar pasangan pengganti kepada nilai mata kod dan menambah nilai indeks semasa sebanyak 2. Jika tidak, ia memberikan nilai jenis char terus kepada nilai titik kod dan menambah nilai indeks semasa sebanyak 1. Contoh ini mengambil masa 1.38 kali lebih lama untuk diproses daripada Contoh 1-1. </p><p><strong>Penyenaraian 2. Sokongan terhad </strong></p><pre class="brush:php;toolbar:false">int[] toCodePointArray(String str) { // Example 1-2 int len = str.length(); // the length of str int[] acp; // an array of code points int surrogatePairCount = 0; // the count of surrogate pairs for (int i = 1; i <p>Pendekatan untuk mengemas kini perisian dalam Penyenaraian 2 adalah naif. Ia menyusahkan dan memerlukan pengubahsuaian yang meluas, menjadikan perisian yang terhasil rapuh dan sukar untuk diubah pada masa hadapan. Secara khususnya, isu ini ialah: </p><p>◆Bilangan titik kod perlu dikira untuk memperuntukkan memori yang mencukupi</p><p>◆Sukar untuk mendapatkan nilai titik kod yang betul untuk indeks tertentu dalam rentetan </p> <p>◆Sukar untuk mengalihkan indeks semasa dengan betul untuk langkah pemprosesan seterusnya </p><p>Algoritma yang dipertingkatkan muncul dalam contoh seterusnya. </p><p><strong>Contoh: Sokongan asas</strong></p><p>Java 1.5 menyediakan kaedah codePointCount(), codePointAt() dan offsetByCodePoints() untuk mengendalikan ketiga-tiga masalah Contoh 1-2 masing-masing. Penyenaraian 3 menggunakan kaedah ini untuk meningkatkan kebolehbacaan algoritma ini: </p><p><strong>Penyenaraian 3. Sokongan asas</strong></p><pre class="brush:php;toolbar:false">int[] toCodePointArray(String str) { // Example 1-3 int len = str.length(); // the length of str int[] acp = new int[str.codePointCount(0, len)]; for (int i = 0, j = 0; i <p>Walau bagaimanapun, Penyenaraian 3 mengambil masa 2.8 lebih lama untuk diproses daripada Penyenaraian 1 kali . </p><p><strong>Contoh 1-4: Menggunakan codePointBefore()</strong></p><p>Apabila offsetByCodePoints() menerima nombor negatif sebagai parameter kedua, ia boleh mengira jarak dari permulaan nilai offset mutlak rentetan. Seterusnya, codePointBefore() boleh mengembalikan nilai titik kod sebelum indeks yang ditentukan. Kaedah ini digunakan untuk melintasi rentetan dari hujung ke permulaan dalam Penyenaraian 4: </p><p><strong>Penyenaraian 4. Sokongan asas menggunakan codePointBefore() </strong></p><pre class="brush:php;toolbar:false">int[] toCodePointArray(String str) { // Example 1-4 int len = str.length(); // the length of str int[] acp = new int[str.codePointCount(0, len)]; int j = acp.length; // an index for acp for (int i = len; i > 0; i = str.offsetByCodePoints(i, -1)) { acp[--j] = str.codePointBefore(i); } return acp; }
Masa pemprosesan untuk contoh ini&mdash ; 2.72 kali lebih lama daripada Contoh 1-1 — Secara amnya, saiz kod dalam JVM adalah lebih kecil apabila anda membandingkan sifar dan bukannya nilai bukan sifar, yang kadangkala meningkatkan prestasi. Walau bagaimanapun, peningkatan kecil mungkin tidak berbaloi untuk mengorbankan kebolehbacaan.
Contoh 1-5: Menggunakan charCount()
Contoh 1-3 dan 1-4 menyediakan sokongan pasangan pengganti asas. Mereka tidak memerlukan sebarang pembolehubah sementara dan merupakan kaedah pengekodan yang mantap. Untuk mendapatkan masa pemprosesan yang lebih singkat, menggunakan charCount() dan bukannya offsetByCodePoints() adalah berkesan, tetapi memerlukan pembolehubah sementara untuk memegang nilai titik kod, seperti yang ditunjukkan dalam Penyenaraian 5:
Penyenaraian 5. Menggunakan charCount Sokongan dioptimumkan ()
int[] toCodePointArray(String str) { // Example 1-5 int len = str.length(); // the length of str int[] acp = new int[str.codePointCount(0, len)]; int j = 0; // an index for acp for (int i = 0, cp; i <p>Masa pemprosesan Penyenaraian 5 dikurangkan kepada 1.68 kali lebih lama daripada Contoh 1-1. </p><p><strong>Contoh 1-6: Mengakses tatasusunan aksara</strong></p><p>Penyenaraian 6 Mengakses tatasusunan jenis aksara secara terus semasa menggunakan pengoptimuman yang ditunjukkan dalam Contoh 1-5:</p> <p><strong>Penyenaraian 6. Sokongan yang dioptimumkan untuk menggunakan tatasusunan char </strong></p><pre class="brush:php;toolbar:false">int[] toCodePointArray(String str) { // Example 1-6 char[] ach = str.toCharArray(); // a char array copied from str int len = ach.length; // the length of ach int[] acp = new int[Character.codePointCount(ach, 0, len)]; int j = 0; // an index for acp for (int i = 0, cp; i <p>Susun atur char disalin daripada rentetan menggunakan toCharArray(). Prestasi dipertingkatkan kerana akses terus kepada tatasusunan adalah lebih pantas daripada akses tidak langsung melalui kaedah. Masa pemprosesan adalah 1.51 kali lebih lama daripada Contoh 1-1. Walau bagaimanapun, apabila dipanggil, toCharArray() memerlukan beberapa overhed untuk mencipta tatasusunan baharu dan menyalin data ke dalam tatasusunan. Kaedah kemudahan yang disediakan oleh kelas String tidak boleh digunakan sama ada. Walau bagaimanapun, algoritma ini berguna apabila berurusan dengan sejumlah besar data. </p><p><strong>Contoh 1-7: Algoritma berorientasikan objek </strong></p><p>Algoritma berorientasikan objek untuk contoh ini menggunakan kelas CharBuffer, seperti yang ditunjukkan dalam Penyenaraian 7: </p> <p> <strong>Penyenaraian 7. Algoritma berorientasikan objek menggunakan CharSequence </strong></p><pre class="brush:php;toolbar:false">int[] toCodePointArray(String str) { // Example 1-7 CharBuffer cBuf = CharBuffer.wrap(str); // Buffer to wrap str IntBuffer iBuf = IntBuffer.allocate( // Buffer to store code points Character.codePointCount(cBuf, 0, cBuf.capacity())); while (cBuf.remaining() > 0) { int cp = Character.codePointAt(cBuf, 0); // the current code point iBuf.put(cp); cBuf.position(cBuf.position() + Character.charCount(cp)); } return iBuf.array(); }
Tidak seperti contoh sebelumnya, Penyenaraian 7 tidak memerlukan indeks untuk memegang kedudukan semasa untuk akses berjujukan. Sebaliknya, CharBuffer secara dalaman menjejaki kedudukan semasa. Kelas Character menyediakan kaedah statik codePointCount() dan codePointAt(), yang mengendalikan CharBuffers melalui antara muka CharSequence. CharBuffer sentiasa menetapkan kedudukan semasa kepada kepala CharSequence. Oleh itu, apabila codePointAt() dipanggil, parameter kedua sentiasa ditetapkan kepada 0. Masa pemprosesan adalah 2.15 kali lebih lama daripada Contoh 1-1.
这些顺序访问示例的计时测试使用了一个包含 10,000 个代理对和 10,000 个非代理对的样例字符串。码位数组从这个字符串创建 10,000 次。测试环境包括:
◆OS:Microsoft Windows® XP Professional SP2
◆Java:IBM Java 1.5 SR7
◆CPU:Intel® Core 2 Duo CPU T8300 @ 2.40GHz
◆Memory:2.97GB RAM
表 1 展示了示例 1-1 到 1-7 的绝对和相对处理时间以及关联的 API:
表 1. 顺序访问示例的处理时间和 API
随机访问是直接访问一个字符串中的任意位置。当字符串被访问时,索引值基于 16 位 char 类型的单位。但是,如果一个字符串使用 32 位码位,那么它不能使用一个基于 32 位码位的单位的索引访问。必须使用 offsetByCodePoints() 来将码位的索引转换为 char 类型的索引。如果算法设计很糟糕,这会导致很差的性能,因为 offsetByCodePoints() 总是通过使用第二个参数从第一个参数计算字符串的内部。在这个小节中,我将比较三个示例,它们通过使用一个短单位来分割一个长字符串。
示例 2-1:基准测试(不支持代理对)
清单 8 展示如何使用一个宽度单位来分割一个字符串。这个基准测试留作后用,不支持代理对。
清单 8. 不支持代理对
String[] sliceString(String str, int width) { // Example 2-1 // It must be that "str != null && width > 0". List<string> slices = new ArrayList<string>(); int len = str.length(); // (1) the length of str int sliceLimit = len - width; // (2) Do not slice beyond here. int pos = 0; // the current position per char type while (pos <p>sliceLimit 变量对分割位置有所限制,以避免在剩余的字符串不足以分割当前宽度单位时抛出一个 IndexOutOfBoundsException 实例。这种算法在当前位置超出 sliceLimit 时从 while 循环中跳出后再处理最后的分割。</p> <p><strong>示例 2-2:使用一个码位索引</strong></p> <p>清单 9 展示了如何使用一个码位索引来随机访问一个字符串:</p> <p><strong>清单 9. 糟糕的性能</strong></p> <pre class="brush:php;toolbar:false">String[] sliceString(String str, int width) { // Example 2-2 // It must be that "str != null && width > 0". List<string> slices = new ArrayList<string>(); int len = str.codePointCount(0, str.length()); // (1) code point count [Modified] int sliceLimit = len - width; // (2) Do not slice beyond here. int pos = 0; // the current position per code point while (pos <p>清单 9 修改了 清单 8 中的几行。首先,在 Line (1) 中,length() 被 codePointCount() 替代。其次,在 Lines (3)、(4) 和 (6) 中,char 类型的索引通过 offsetByCodePoints() 用码位索引替代。</p> <p>基本的算法流与 示例 2-1 中的看起来几乎一样。但处理时间根据字符串长度与示例 2-1 的比率同比增加,因为 offsetByCodePoints() 总是从字符串头到指定索引计算字符串内部。</p> <p><strong>示例 2-3:减少的处理时间</strong></p> <p>可以使用清单 10 中展示的方法来避免 示例 2-2 的性能问题:</p> <p><strong>清单 10. 改进的性能</strong></p> <pre class="brush:php;toolbar:false">String[] sliceString(String str, int width) { // Example 2-3 // It must be that "str != null && width > 0". List<string> slices = new ArrayList<string>(); int len = str.length(); // (1) the length of str int sliceLimit // (2) Do not slice beyond here. [Modified] = (len >= width * 2 || str.codePointCount(0, len) > width) ? str.offsetByCodePoints(len, -width) : 0; int pos = 0; // the current position per char type while (pos <p>首先,在 Line (2) 中,(清单 9 中的)表达式 len-width 被 offsetByCodePoints(len,-width) 替代。但是,当 width 的值大于码位的数量时,这会抛出一个 IndexOutOfBoundsException 实例。必须考虑边界条件以避免异常,使用一个带有 try/catch 异常处理程序的子句将是另一个解决方案。如果表达式 len>width*2 为 true,则可以安全地调用 offsetByCodePoints(),因为即使所有码位都被转换为代理对,码位的数量仍会超过 width 的值。或者,如果 codePointCount(0,len)>width 为 true,也可以安全地调用 offsetByCodePoints()。如果是其他情况,sliceLimit 必须设置为 0。</p> <p>在 Line (4) 中,清单 9 中的表达式 pos + width 必须在 while 循环中使用 offsetByCodePoints(pos,width) 替换。需要计算的量位于 width 的值中,因为第一个参数指定当 width 的值。接下来,在 Line (5) 中,表达式 pos+=width 必须使用表达式 pos=end 替换。这避免两次调用 offsetByCodePoints() 来计算相同的索引。源代码可以被进一步修改以最小化处理时间。</p> <h3 id="yisu3h-to116">处理时间比较</h3> <p>图 1 和图 2 展示了示例 2-1、2-2 和 2-3 的处理时间。样例字符串包含相同数量的代理对和非代理对。当字符串的长度和 width 的值被更改时,样例字符串被切割 10,000 次。</p> <p><img src="https://img.php.cn/upload/article/000/000/164/168337700040575.png" alt="Cara menggunakan pengaturcaraan ejen Unicode di Java"></p> <p><strong>图 1. 一个分段的常量宽度</strong></p> <p><img src="https://img.php.cn/upload/article/000/000/164/168337700041405.png" alt="Cara menggunakan pengaturcaraan ejen Unicode di Java"></p> <p><strong>图 2. 分段的常量计数</strong></p> <p>示例 2-1 和 2-3 按照长度比例增加了它们的处理时间,但 示例 2-2 按照长度的平方比例增加了处理时间。当字符串长度和 width 的值增加而分段的数量固定时,示例 2-1 拥有一个常量处理时间,而示例 2-2 和 2-3 以 width 的值为比例增加了它们的处理时间。</p> <h3 id="yisu3h-to127">信息 API</h3> <p>大多数处理代理的信息 API 拥有两种名称相同的方法。一种接收 16 位 char 类型参数,另一种接收 32 为码位参数。表 2 展示了每个 API 的返回值。第三列针对 U+53F1,第 4 列针对 U+20B9F,最后一列针对 U+D842(即高代理),而 U+20B9F 被转换为 U+D842 加上 U+DF9F 的代理对。如果程序不能处理代理对,则值 U+D842 而不是 U+20B9F 将导致意想不到的结果(在表 2 中以粗斜体表示)。</p> <p><strong>表 2. 用于代理的信息 API</strong></p> <p><img src="https://img.php.cn/upload/article/000/000/164/168337700086359.gif" alt="Cara menggunakan pengaturcaraan ejen Unicode di Java"></p> <h3 id="yisu3h-to133">其他 API</h3> <p>本小节介绍前面的小节中没有讨论的代理对相关 API。表 3 展示所有这些剩余的 API。所有代理对 API 都包含在表 1、2 和 3 中。</p> <p><strong>表 3. 其他代理 API</strong></p> <p><img src="https://img.php.cn/upload/article/000/000/164/168337700025390.gif" alt="Cara menggunakan pengaturcaraan ejen Unicode di Java"></p> <p>清单 11 展示了从一个码位创建一个字符串的 5 种方法。用于测试的码位是 U+53F1 和 U+20B9F,它们在一个字符串中重复了 100 亿次。清单 11 中的注释部分显示了处理时间:</p> <p><strong>清单 11. 从一个码位创建一个字符串的 5 种方法</strong></p> <pre class="brush:php;toolbar:false">int cp = 0x20b9f; // CJK Ideograph Extension B String str1 = new String(new int[]{cp}, 0, 1); // processing time: 206ms String str2 = new String(Character.toChars(cp)); // 187ms String str3 = String.valueOf(Character.toChars(cp)); // 195ms String str4 = new StringBuilder().appendCodePoint(cp).toString(); // 269ms String str5 = String.format("%c", cp); // 3781ms
str1、str2、str3 和 str4 的处理时间没有明显不同。相反,创建 str5 花费的时间要长得多,因为它使用 String.format(),该方法支持基于本地和格式化信息的灵活输出。str5 方法应该只用于程序的末尾来输出文本。
Atas ialah kandungan terperinci Cara menggunakan pengaturcaraan ejen Unicode di Java. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!