cari
RumahPeranti teknologiAIStrategi dan kaedah untuk mengelompokkan dokumen insurans menggunakan pemprosesan bahasa semula jadi

Penterjemah |. Li Rui

Penilai |. penaakulan.

Strategi dan kaedah untuk mengelompokkan dokumen insurans menggunakan pemprosesan bahasa semula jadiDokumen dan Polisi Insurans: Kes Penggunaan Kompleks

Adalah diketahui bahawa sehingga 87% projek sains data gagal beralih daripada bukti konsep kepada pengeluaran ; semula jadi dalam projek pemprosesan Bahasa (NLP) tidak terkecuali. Mereka mesti mengatasi beberapa kesukaran yang tidak dapat dielakkan berkaitan dengan ruang ini dan selok-beloknya.

Kesukaran utama datang daripada:

Susun atur kompleks dokumen berkaitan insurans.
  • Kekurangan korpus besar dengan anotasi yang berkaitan.
  • Kerumitan reka letak sangat hebat sehingga konsep bahasa yang sama boleh mengubah makna dan nilainya secara drastik bergantung pada tempat ia diletakkan dalam dokumen.

Lihat contoh mudah di bawah: Jika anda cuba membina enjin untuk mengenal pasti sama ada liputan "keganasan" terdapat dalam polisi, anda perlu menetapkan nilai yang berbeza tanpa mengira di mana ia diletakkan:

(1) Hadkan bahagian kecil halaman pengisytiharan.

(2) Bahagian "Pengecualian" polisi.

(3) Tambahkan satu atau lebih pengesahan insurans.

(4) Tambahkan sokongan khusus pada liputan.

Kekurangan dokumen insurans beranotasi berkualiti tinggi dan bersaiz sesuai secara langsung berkaitan dengan kesukaran yang wujud untuk menganotasi dokumen kompleks tersebut dan jumlah usaha yang diperlukan untuk menganotasi puluhan ribu polisi.

Dan ini hanyalah puncak gunung ais. Di samping itu, keperluan untuk menormalkan konsep insurans juga mesti dipertimbangkan.

Penormalan bahasa: kuasa yang tidak kelihatan tetapi berkuasa dalam bahasa insurans

Apabila berurusan dengan pangkalan data, penormalan konsep ialah proses yang difahami dengan baik. Oleh kerana ia adalah kunci untuk menggunakan penaakulan dan meningkatkan kelajuan proses anotasi, ia juga penting untuk NLP dalam bidang insurans.

Konsep penormalan bermaksud mengumpulkan elemen di bawah bahasa tag yang sama, yang mungkin kelihatan sangat berbeza. Walaupun terdapat banyak contoh, yang paling penting datang daripada polisi insurans yang melindungi bencana alam.

Dalam kes ini, sub-had yang berbeza akan digunakan untuk zon banjir yang berbeza. Kawasan yang paling berisiko banjir sering dirujuk sebagai "zon banjir berisiko tinggi". Konsep ini boleh dinyatakan sebagai:

(1) Kawasan banjir Tahap 1

(2) Kawasan berisiko banjir (SFHA)

(3) Kawasan banjir A

Tunggu

Pada hakikatnya, mana-mana perlindungan insurans boleh mempunyai banyak istilah yang boleh dikumpulkan bersama, dan bergantung pada kawasan geografi tertentu dan risiko yang wujud, perlindungan bencana alam yang paling penting walaupun mempunyai dua Perbezaan antara peringkat atau peringkat (I, II dan III).

Darabkan itu dengan semua elemen yang mungkin boleh anda temui dan bilangan varian boleh menjadi sangat besar dengan cepat. Ini menyebabkan kedua-dua anotor pembelajaran mesin dan enjin pemprosesan bahasa semula jadi (NLP) tersekat apabila cuba mendapatkan, membuat kesimpulan atau melabelkan maklumat yang betul.

Jenis pengelompokan bahasa baharu: pendekatan hibrid

Cara yang lebih baik untuk menyelesaikan tugas pemprosesan bahasa semula jadi (NLP) yang kompleks adalah berdasarkan teknik hibrid (pembelajaran mesin/simbolik) yang menggunakan pembelajaran mesin pengelompokan bahasa mikro berasaskan meningkatkan hasil dan kitaran hayat aliran kerja insurans, yang kemudiannya diwarisi oleh enjin simbolik.

Walaupun pengelompokan teks tradisional digunakan dalam kaedah pembelajaran tanpa pengawasan untuk membuat kesimpulan pola semantik dan mengumpulkan dokumen dengan topik yang serupa, ayat dengan makna yang serupa, dsb., kaedah hibrid agak berbeza . Kelompok mikrolinguistik dicipta pada tahap berbutir menggunakan algoritma pembelajaran mesin yang dilatih pada data berlabel menggunakan nilai ternormal yang dipratentukan. Setelah gugusan mikrolinguistik disimpulkan, ia boleh digunakan dalam aktiviti pembelajaran mesin selanjutnya atau dalam talian paip hibrid didorong logik inferens berdasarkan lapisan simbolik.

Ini selaras dengan peraturan emas tradisional pengaturcaraan: "pecahkan masalah." Langkah pertama dalam menyelesaikan kes penggunaan yang kompleks (seperti kebanyakan kes penggunaan dalam ruang insurans) ialah memecahkannya kepada bahagian yang lebih kecil dan lebih sedap.

Apakah tugas yang boleh dicapai oleh pengelompokan bahasa campuran, dan sejauh manakah ia boleh berskala?

Enjin simbolik sering dilabelkan sebagai sangat tepat tetapi tidak berskala kerana ia tidak mempunyai fleksibiliti pembelajaran mesin apabila berhadapan dengan situasi yang tidak dilihat semasa latihan.

Walau bagaimanapun, pengelompokan bahasa jenis ini menyelesaikan masalah ini dengan memanfaatkan pembelajaran mesin untuk mengenal pasti konsep yang kemudiannya dihantar kepada logik yang kompleks dan tepat bagi enjin simbolik seterusnya dalam perancangan.

Kemungkinan tidak berkesudahan: sebagai contoh, langkah simbolik boleh mengubah nilai intrinsik pengecaman pembelajaran mesin berdasarkan segmen dokumen yang dimiliki oleh konsep tersebut.

Berikut ialah contoh penggunaan proses tatatanda "segmentasi" (memisahkan teks kepada kawasan yang berkaitan) untuk melihat cara menggunakan label yang diluluskan oleh modul pembelajaran mesin.

Bayangkan bahawa model perlu memahami sama ada perlindungan tertentu dikecualikan daripada polisi 100 halaman.

Enjin pembelajaran mesin mula-mula akan mengumpulkan semua kemungkinan variasi liputan "Seni":

  • "Seni Halus"
  • " "Kerja Seni"
  • "Item Artistik"
  • "Perhiasan"
  • dan sebagainya.

Susulan ini, bahagian simbol saluran paip akan menyemak sama ada bahagian "Pengecualian" menyebut teg "Seni" untuk mengetahui sama ada insurans dikecualikan daripada polisi atau jika ia dilindungi ( seperti sebahagian daripada senarai sub-had).

Terima kasih kepada ini, anotor pembelajaran mesin tidak perlu risau tentang memberikan label berbeza kepada semua varian Seni berdasarkan kedudukan mereka dalam dasar: mereka hanya perlu menganotasi varian mereka Nilai ternormal untuk "Seni", yang akan bertindak sebagai gugusan bahasa mikro.

Satu lagi contoh berguna tugas kompleks ialah pengagregatan data. Jika enjin hibrid direka bentuk untuk mengekstrak sub-sekatan liputan tertentu, serta isu penormalan liputan, terdapat lapisan kerumitan tambahan untuk ditangani: susunan item bahasa untuk pengagregatan.

Pertimbangkan bahawa tugas di tangan adalah untuk mengeluarkan bukan sahaja sub-had liputan tertentu, tetapi juga kelayakannya (setiap acara, pengagregatan, dll.). Tiga item boleh disusun dalam beberapa pesanan berbeza:

  • Seni Halus $100,000 Setiap Item
  • Seni Halus Setiap Item $100,000
  • Setiap Item $100,000 Seni Halus>Seni Halus $100,000
  • Seni Halus $100,000
Mengambil kesempatan daripada semua pilih atur ini sambil mengagregat data boleh meningkatkan kerumitan model pembelajaran mesin dengan ketara. Pendekatan hibrid, sebaliknya, akan membenarkan model pembelajaran mesin mengenal pasti label yang dinormalkan dan kemudian membenarkan penaakulan simbolik mengenal pasti susunan yang betul berdasarkan data input daripada bahagian pembelajaran mesin.

Ini hanyalah dua contoh yang menunjukkan bahawa jumlah logik dan penaakulan simbolik kompleks yang tidak terhad boleh digunakan di atas algoritma pembelajaran mesin berskala untuk mengenal pasti konsep kanonik.

Aliran kerja berskala yang lebih mudah dibina dan diselenggara

Selain kebolehskalaan, penaakulan simbolik membawa faedah lain kepada keseluruhan aliran kerja projek:

    Tidak perlu melaksanakan aliran kerja pembelajaran mesin yang berbeza untuk tugas yang kompleks, memerlukan teg yang berbeza untuk dilaksanakan dan diselenggara. Selain itu, melatih semula model pembelajaran mesin tunggal adalah lebih pantas dan menggunakan kurang sumber berbanding melatih semula berbilang model.
  • Memandangkan bahagian kompleks logik perniagaan dikendalikan secara simbolik, adalah lebih mudah bagi pencatat data untuk menambahkan anotasi manusia pada saluran paip pembelajaran mesin.
  • Atas sebab yang sama yang dinyatakan di atas, lebih mudah bagi penguji untuk memberikan maklum balas terus kepada proses penyeragaman pembelajaran mesin. Selain itu, memandangkan bahagian pembelajaran mesin aliran kerja menormalkan elemen bahasa, pengguna akan mempunyai senarai teg yang lebih kecil untuk dilabelkan dengan dokumen.
  • Peraturan simbol tidak perlu dikemas kini dengan kerap: perkara yang kerap dikemas kini ialah bahagian pembelajaran mesin, yang turut mendapat manfaat daripada maklum balas pengguna.
Kesimpulan

    Pembelajaran mesin dalam projek kompleks dalam bidang insurans mungkin mengalami masalah kerana logik inferens sukar untuk dimampatkan ke dalam tag mudah ini juga menyukarkan kehidupan annotator .
  • Penempatan teks dan inferens boleh mengubah makna sebenar konsep dengan bentuk linguistik yang sama secara drastik.
  • Dalam aliran kerja pembelajaran mesin tulen, lebih kompleks logiknya, lebih banyak dokumen latihan biasanya diperlukan untuk mencapai ketepatan gred pengeluaran.
  • Atas sebab ini, pembelajaran mesin memerlukan beribu-ribu (atau bahkan puluhan ribu) dokumen pra-label untuk membina model yang berkesan.
  • Pendekatan hibrid mengurangkan kerumitan: pembelajaran mesin dan anotasi pengguna mencipta kelompok/teg bahasa, dan ini kemudiannya digunakan sebagai titik permulaan atau blok binaan untuk enjin simbolik untuk mencapai matlamatnya.
  • Maklum balas pengguna, setelah disahkan, boleh digunakan untuk melatih semula model tanpa mengubah bahagian paling berbutir (yang boleh dikendalikan oleh bahagian simbolik aliran kerja).

Tajuk asal: Polisi Insurans: Pengelompokan Dokumen Melalui NLP Hibrid, pengarang: Stefano Reitano

Atas ialah kandungan terperinci Strategi dan kaedah untuk mengelompokkan dokumen insurans menggunakan pemprosesan bahasa semula jadi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:51CTO.COM. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

自然语言生成任务中的五种采样方法介绍和Pytorch代码实现自然语言生成任务中的五种采样方法介绍和Pytorch代码实现Feb 20, 2024 am 08:50 AM

在自然语言生成任务中,采样方法是从生成模型中获得文本输出的一种技术。这篇文章将讨论5种常用方法,并使用PyTorch进行实现。1、GreedyDecoding在贪婪解码中,生成模型根据输入序列逐个时间步地预测输出序列的单词。在每个时间步,模型会计算每个单词的条件概率分布,然后选择具有最高条件概率的单词作为当前时间步的输出。这个单词成为下一个时间步的输入,生成过程会持续直到满足某种终止条件,比如生成了指定长度的序列或者生成了特殊的结束标记。GreedyDecoding的特点是每次选择当前条件概率最

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

如何使用PHP进行基本的自然语言生成如何使用PHP进行基本的自然语言生成Jun 22, 2023 am 11:05 AM

自然语言生成是一种人工智能技术,它能够将数据转换为自然语言文本。在当今的大数据时代,越来越多的业务需要将数据可视化或呈现给用户,而自然语言生成正是一种非常有效的方法。PHP是一种非常流行的服务器端脚本语言,它可以用于开发Web应用程序。本文将简要介绍如何使用PHP进行基本的自然语言生成。引入自然语言生成库PHP自带的函数库并不包括自然语言生成所需的功能,因此

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular