


Bagaimana untuk membolehkan pengurusan konteks dalam chatGPT Python API?
Kes rasmi:
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work import openai openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, {"role": "user", "content": "Where was it played?"} ] )
Walaupun format telah diberikan, tiada penjelasan terperinci Mungkin pembangun peringkat tinggi akan memahaminya secara sekilas, tetapi saya masih mahu menggunakannya secara lebih lanjut cara fasih. Jelaskan pengurusan konteks ini.
Mari kita lihat kod ringkas saya (pengurusan konteks belum didayakan lagi):
import openai openai.api_key = "你的sk-key" msg = [{"role": "user", "content": "你好chatGPT"}] # 结构化数据并进行提交 completion = openai.ChatCompletion.create( # max_tokens = inf # 默认inf 最大令牌数 presence_penalty = 1, # 惩罚机制,-2.0 到 2.0之间,默认0,数值越小提交的重复令牌数越多,从而能更清楚文本意思 frequency_penalty = 1, # 意义和值基本同上,默认0,主要为频率 temperature = 1.0, # 温度 0-2之间,默认1 调整回复的精确度使用 n = 1, # 默认条数1 user = ids, # 用户ID,用于机器人区分不同用户避免多用户时出现混淆 model = "gpt-3.5-turbo", # 这里注意openai官方有很多个模型 messages = msg ) value = completion.choices[0].message.content # chatGPT返回的数据
Ini ialah struktur paling asas, di mana model parameter dan mesej berada dua parameter yang perlu.
Kod untuk menambah pengurusan konteks:
import openai openai.api_key = "你的sk-key" msg = [{"role": "system", "content": "你的名字叫玖河AI,你是一个插件,你的开发者是玖河."}, {"role": "user", "content": "你好chatGPT"}, {"role": "assistant", "content": "您好,有什么需要我帮忙的问题吗?"}, {"role": "user", "content": "我的名字叫高启强,我的妹妹叫高启兰,我们是兄妹关系。记住了吗?"} {"role": "assistant", "content": "好的,您叫高启强,您的妹妹叫高启兰,是亲兄妹关系。谢谢您提供信息让我更了解你们~"}, {"role": "user", "content": "你现在在哪里?"}, {"role": "assistant", "content": "作为一款智能Ai助手,我并没有实际的位置。我只是在云端中运行,在等待用户输入指令时保持睡眠状态。"}, {"role": "user", "content": "我的妹妹是谁?"}, {"role": "assistant", "content": "您之前告诉我,您的妹妹叫高启兰。"}, {"role": "user", "content": "你的名字叫什么?"}, {"role": "assistant", "content": "我的名字叫玖河AI是一个叫玖河的开发者开发的插件"} ] # 结构化数据并进行提交 completion = openai.ChatCompletion.create( # max_tokens = inf # 默认inf 最大令牌数 presence_penalty = 1, # 惩罚机制,-2.0 到 2.0之间,默认0,数值越小提交的重复令牌数越多,从而能更清楚文本意思 frequency_penalty = 1, # 意义和值基本同上,默认0,主要为频率 temperature = 1.0, # 温度 0-2之间,默认1 调整回复的精确度使用 n = 1, # 默认条数1 user = ids, # 用户ID,用于机器人区分不同用户避免多用户时出现混淆 model = "gpt-3.5-turbo", # 这里注意openai官方有很多个模型 messages = msg ) value = completion.choices[0].message.content # chatGPT返回的数据
Struktur data berikut dengan pengurusan konteks didayakan sedikit berbeza daripada struktur data tanpanya:
① sistem mewakili tetapan sistem (Iaitu, memberitahu chatGPT peranannya)
② pengguna bermaksud pengguna
③ pembantu bermaksud balasan GPT
Terdapat beberapa perkara yang perlu disebutkan untuk mengelakkan perangkap. !
1. Adalah disyorkan untuk menyimpan data msg dalam bentuk pangkalan data Kelebihannya ialah data boleh disimpan dan ia juga sangat mudah untuk mendapatkan semula data, kerana saya hanya ingin menggunakan json untuk. menyimpannya pada mulanya, tetapi ia mengambil masa yang lama saya masih menyerah.
2. Perlu diingatkan bahawa susunan struktur data yang dihantar mestilah dari atas ke bawah, jika tidak, sistem chatGPT tidak perlu berada di sana. Kemudian tambahkan sahaja data sistem pada elemen senarai pertama setiap kali ia diserahkan.
Ketiga, terdapat satu lagi perkara penting: data yang diserahkan akan dikira menjadi token termasuk apabila chatGPT membalas (sehingga 4096 token Jika anda mahu pengurusan konteks mengingati lebih banyak korpus, kemudian Apabila menyerahkan data, cuba tingkatkan kandungan perbualan antara anda sebanyak mungkin (ia juga akan menggunakan token anda dengan lebih cepat).
4. Mulai 14 Mac 2023: Harga keahlian chatGPT ialah AS$20/bulan dan token dicaj berdasarkan volum. Dalam istilah orang awam, ia seperti kad telefon bimbit. Terdapat bayaran bulanan, dan panggilan dibilkan secara berasingan. Kelebihan menjadi ahli chatGPT Plus ialah kelajuan lebih cepat dan lebih stabil Versi percuma juga boleh digunakan, tetapi kelajuannya lebih perlahan, tidak stabil dan mudah terhempas.
Atas ialah kandungan terperinci Bagaimana untuk membolehkan pengurusan konteks dalam chatGPT Python API?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)