


Belajar Python untuk melaksanakan sistem pemanduan autonomi
Persekitaran Pemasangan
gim ialah kit alat untuk membangunkan dan membandingkan algoritma pembelajaran tetulang Agak mudah untuk memasang perpustakaan gim dan sub-senarionya dalam python.
Pasang gim:
pip install gym
Pasang modul pemanduan autonomi, di sini kami menggunakan pakej highway-env yang diterbitkan oleh Edouard Leurent di github:
pip install --user git+https://github.com/eleurent/highway-env
Ia mengandungi 6 Scene:
- Lebuhraya - "highway-v0"
- Cantum - "merge-v0"
- Bulatan - "roundabout-v0"
- Tempat letak kereta - "parking-v0"
- Persimpangan - "intersection-v0"
- Trek lumba - "racetrack-v0"
Dokumentasi terperinci boleh didapati di sini :
https://www.php.cn/link/c0fda89ebd645bd7cea60fcbb5960309
Persekitaran konfigurasi
Selepas pemasangan dalam kod (ambil pemandangan lebuh raya sebagai contoh):
import gym import highway_env %matplotlib inline env = gym.make('highway-v0') env.reset() for _ in range(3): action = env.action_type.actions_indexes["IDLE"] obs, reward, done, info = env.step(action) env.render()
Selepas berjalan, pemandangan berikut akan dijana dalam simulator:
Kelas env mempunyai banyak parameter yang boleh dikonfigurasikan Untuk butiran, sila rujuk dokumen asal.
Model latihan
1 Pemprosesan data
(1) keadaan
Tiada penderia yang ditakrifkan dalam pakej lebuh raya-env, dan semua keadaan ( pemerhatian) kenderaan adalah Semua dibaca daripada kod asas, menjimatkan banyak kerja awal. Menurut dokumentasi, keadaan (ovservations) mempunyai tiga kaedah output: Kinematik, Imej Skala Kelabu dan Grid Penghuni.
Kinematik
Keluaran matriks V*F, V mewakili bilangan kenderaan yang perlu diperhatikan (termasuk kenderaan ego itu sendiri), dan F mewakili bilangan ciri yang perlu dikira. Contoh:
Data akan dinormalkan secara lalai apabila dijana Julat nilai ialah: [100, 100, 20, 20]. Anda juga boleh menetapkan atribut kenderaan selain daripada kenderaan ego sebagai koordinat mutlak peta atau relatif kepada kenderaan ego.
Apabila mentakrifkan persekitaran, anda perlu menetapkan parameter ciri:
config = { "observation": { "type": "Kinematics", #选取5辆车进行观察(包括ego vehicle) "vehicles_count": 5, #共7个特征 "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"], "features_range": { "x": [-100, 100], "y": [-100, 100], "vx": [-20, 20], "vy": [-20, 20] }, "absolute": False, "order": "sorted" }, "simulation_frequency": 8,# [Hz] "policy_frequency": 2,# [Hz] }
Imej Skala Kelabu
Janakan imej skala kelabu W*H, dengan W mewakili Lebar imej, H mewakili ketinggian imej
Grid penghunian
menjana matriks tiga dimensi WHF, menggunakan jadual W*H untuk mewakili keadaan kenderaan di sekeliling kenderaan ego ciri F.
(2) tindakan
Tindakan dalam pakej lebuh raya-env dibahagikan kepada dua jenis: berterusan dan diskret. Tindakan berterusan boleh menentukan secara langsung nilai pendikit dan sudut stereng Tindakan diskret mengandungi 5 tindakan meta:
ACTIONS_ALL = { 0: 'LANE_LEFT', 1: 'IDLE', 2: 'LANE_RIGHT', 3: 'FASTER', 4: 'SLOWER' }
(3) ganjaran
Selain tempat letak kereta, pakej highway-env Mereka semua menggunakan fungsi ganjaran yang sama:
Fungsi ini hanya boleh ditukar dalam kod sumbernya dan berat hanya boleh dilaraskan di lapisan luar .
(Fungsi ganjaran tempat letak kereta disertakan dalam dokumen asal)
2 Bina model
Rangkaian DQN, saya menggunakan kaedah perwakilan keadaan pertama - Kinematics untuk demonstrasi. Memandangkan jumlah data keadaan adalah kecil (5 kereta * 7 ciri), anda boleh mengabaikan penggunaan CNN dan terus menukar saiz [5,7] data dua dimensi kepada [1,35]. model ialah 35. Output ialah bilangan tindakan diskret, 5 kesemuanya.
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as T from torch import FloatTensor, LongTensor, ByteTensor from collections import namedtuple import random Tensor = FloatTensor EPSILON = 0# epsilon used for epsilon greedy approach GAMMA = 0.9 TARGET_NETWORK_REPLACE_FREQ = 40 # How frequently target netowrk updates MEMORY_CAPACITY = 100 BATCH_SIZE = 80 LR = 0.01 # learning rate class DQNNet(nn.Module): def __init__(self): super(DQNNet,self).__init__() self.linear1 = nn.Linear(35,35) self.linear2 = nn.Linear(35,5) def forward(self,s): s=torch.FloatTensor(s) s = s.view(s.size(0),1,35) s = self.linear1(s) s = self.linear2(s) return s class DQN(object): def __init__(self): self.net,self.target_net = DQNNet(),DQNNet() self.learn_step_counter = 0 self.memory = [] self.position = 0 self.capacity = MEMORY_CAPACITY self.optimizer = torch.optim.Adam(self.net.parameters(), lr=LR) self.loss_func = nn.MSELoss() def choose_action(self,s,e): x=np.expand_dims(s, axis=0) if np.random.uniform() < 1-e: actions_value = self.net.forward(x) action = torch.max(actions_value,-1)[1].data.numpy() action = action.max() else: action = np.random.randint(0, 5) return action def push_memory(self, s, a, r, s_): if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(torch.unsqueeze(torch.FloatTensor(s), 0),torch.unsqueeze(torch.FloatTensor(s_), 0), torch.from_numpy(np.array([a])),torch.from_numpy(np.array([r],dtype='float32')))# self.position = (self.position + 1) % self.capacity def get_sample(self,batch_size): sample = random.sample(self.memory,batch_size) return sample def learn(self): if self.learn_step_counter % TARGET_NETWORK_REPLACE_FREQ == 0: self.target_net.load_state_dict(self.net.state_dict()) self.learn_step_counter += 1 transitions = self.get_sample(BATCH_SIZE) batch = Transition(*zip(*transitions)) b_s = Variable(torch.cat(batch.state)) b_s_ = Variable(torch.cat(batch.next_state)) b_a = Variable(torch.cat(batch.action)) b_r = Variable(torch.cat(batch.reward)) q_eval = self.net.forward(b_s).squeeze(1).gather(1,b_a.unsqueeze(1).to(torch.int64)) q_next = self.target_net.forward(b_s_).detach() # q_target = b_r + GAMMA * q_next.squeeze(1).max(1)[0].view(BATCH_SIZE, 1).t() loss = self.loss_func(q_eval, q_target.t()) self.optimizer.zero_grad() # reset the gradient to zero loss.backward() self.optimizer.step() # execute back propagation for one step return loss Transition = namedtuple('Transition',('state', 'next_state','action', 'reward'))
3. Hasil larian
Selepas setiap bahagian selesai, model boleh digabungkan untuk melatih model ini, jadi saya tidak akan melakukannya pergi ke butiran.
Mulakan persekitaran (hanya tambah kelas DQN):
import gym import highway_env from matplotlib import pyplot as plt import numpy as np import time config = { "observation": { "type": "Kinematics", "vehicles_count": 5, "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"], "features_range": { "x": [-100, 100], "y": [-100, 100], "vx": [-20, 20], "vy": [-20, 20] }, "absolute": False, "order": "sorted" }, "simulation_frequency": 8,# [Hz] "policy_frequency": 2,# [Hz] } env = gym.make("highway-v0") env.configure(config)
Model latihan:
dqn=DQN() count=0 reward=[] avg_reward=0 all_reward=[] time_=[] all_time=[] collision_his=[] all_collision=[] while True: done = False start_time=time.time() s = env.reset() while not done: e = np.exp(-count/300)#随机选择action的概率,随着训练次数增多逐渐降低 a = dqn.choose_action(s,e) s_, r, done, info = env.step(a) env.render() dqn.push_memory(s, a, r, s_) if ((dqn.position !=0)&(dqn.position % 99==0)): loss_=dqn.learn() count+=1 print('trained times:',count) if (count%40==0): avg_reward=np.mean(reward) avg_time=np.mean(time_) collision_rate=np.mean(collision_his) all_reward.append(avg_reward) all_time.append(avg_time) all_collision.append(collision_rate) plt.plot(all_reward) plt.show() plt.plot(all_time) plt.show() plt.plot(all_collision) plt.show() reward=[] time_=[] collision_his=[] s = s_ reward.append(r) end_time=time.time() episode_time=end_time-start_time time_.append(episode_time) is_collision=1 if info['crashed']==True else 0 collision_his.append(is_collision)
Saya menambah beberapa fungsi lukisan pada kod beberapa petunjuk utama semasa operasi, dan hitung nilai purata setiap 40 kali latihan.
Purata kadar perlanggaran:
Purata tempoh (s):
Purata ganjaran :
Adalah dapat dilihat bahawa purata kadar insiden perlanggaran akan berkurangan secara beransur-ansur apabila bilangan masa latihan meningkat, dan tempoh setiap zaman akan beransur-ansur dilanjutkan (jika perlanggaran berlaku , zaman akan tamat serta-merta)
Ringkasan
Berbanding dengan simulator CARLA, pakej persekitaran lebuh raya dengan ketara lebih abstrak Ia menggunakan perwakilan seperti permainan supaya algoritma boleh terlatih dalam persekitaran maya yang ideal Tidak perlu mempertimbangkan isu praktikal seperti kaedah pemerolehan data, ketepatan penderia dan masa pengiraan. Ia sangat mesra untuk reka bentuk dan ujian algoritma hujung ke hujung, tetapi dari perspektif kawalan automatik, terdapat lebih sedikit aspek untuk dimulakan dan ia tidak begitu fleksibel untuk diselidik.
Atas ialah kandungan terperinci Belajar Python untuk melaksanakan sistem pemanduan autonomi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6
Alat pembangunan web visual

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa