


gulung! Model penjanaan aliran MIT Poisson mengalahkan model resapan, dengan mengambil kira kualiti dan kelajuan
Pengenalan
Model resapan pada asalnya berasal daripada termodinamik dalam fizik, tetapi baru-baru ini ia telah menjadi popular dalam bidang kecerdasan buatan. Apakah teori fizikal lain yang boleh menggalakkan pembangunan penyelidikan model generatif? Baru-baru ini, penyelidik dari MIT telah diilhamkan oleh teori elektromagnet berdimensi tinggi dan mencadangkan model generatif yang dipanggil Poisson Flow. Secara teorinya, model ini mempunyai imej intuitif dan teori yang ketat secara eksperimen, selalunya lebih baik daripada model resapan dari segi kualiti penjanaan, kelajuan penjanaan dan keteguhan. Artikel ini telah diterima oleh NeurIPS 2022.
- Alamat kertas: https://arxiv.org/abs/2209.11178
- Alamat kod: https://github.com/Newbeeer/Poisson_flow
Diinspirasikan oleh mekanik elektrostatik, para penyelidik mencadangkan model generatif baharu bernama Aliran Poisson model (Poisson Frendah Generatif Model, atau PFGM) . Secara intuitif, penyelidikan ini boleh menganggap titik data N-dimensi sebagai sekumpulan cas positif pada satah z=0, dimensi baharu dalam ruang dimensi N+1 Mereka menjana medan elektrik dalam ruang dimensi tinggi. Bermula dari satah z=0 dan bergerak ke luar di sepanjang garis medan elektrik yang mereka hasilkan, kajian itu dapat menghantar sampel ke hemisfera (seperti ditunjukkan dalam Rajah 1). Arah garisan medan elektrik ini sepadan dengan kecerunan penyelesaian kepada Persamaan Poisson dalam ruang dimensi tinggi. Para penyelidik membuktikan bahawa apabila jejari hemisfera cukup besar, garisan medan elektrik boleh mengubah taburan cas (iaitu taburan data) pada satah z=0 kepada taburan seragam pada hemisfera (Rajah 2).
PFGM mengambil kesempatan daripada keterbalikan talian medan elektrik untuk menjana pengedaran data pada satah z=0: pertama, penyelidik membuat sampel seragam pada hemisfera besar, dan kemudian biarkan sampel mengikut garisan medan elektrik Bergerak dari sfera ke satah z=0 untuk menjana data. Oleh kerana gerakan di sepanjang garis medan elektrik boleh diterangkan oleh persamaan pembezaan biasa (ODE), dalam persampelan sebenar penyelidik hanya perlu menyelesaikan ODE yang ditentukan oleh arah garis medan elektrik. Melalui medan elektrik, PFGM menukar pengedaran mudah pada sfera kepada pengedaran data yang kompleks. Dari perspektif ini, PFGM boleh dianggap sebagai aliran normalizing berterusan (Normalizing Flow).
Dalam percubaan penjanaan imej, PFGM kini merupakan model aliran ternormal yang berprestasi terbaik pada set data standard CIFAR-10, mencapai Ia mencapai skor FID (ukuran kualiti gambar) sebanyak 2.35. Para penyelidik juga menunjukkan kegunaan lain PFGM, seperti keupayaannya untuk mengira kemungkinan imej, melakukan penyuntingan imej, dan skala kepada set data imej resolusi tinggi. Di samping itu, penyelidik mendapati bahawa PFGM mempunyai tiga kelebihan berbanding model penyebaran popular baru-baru ini:
(1) dalam Pada struktur rangkaian yang sama , kualiti sampel yang dijana oleh ODE PFGM adalah jauh lebih baik daripada model resapan (2) Manakala kualiti SDE (persamaan pembezaan stokastik) yang dihasilkan oleh model resapan adalah serupa, ODE PFGM mencapai 10 kali - 20 kali ganda; pecutan;
(3) PFGM lebih teguh daripada model resapan pada struktur rangkaian dengan keupayaan ekspresif yang lebih lemah.
Rajah 1: Titik sampel bergerak di sepanjang garis medan elektrik. Di atas: Pengedaran data adalah dalam bentuk hati; 🎜>
Rajah 2: Kiri: trajektori medan Poisson dalam tiga dimensi;Gambaran Keseluruhan Kaedah
Perhatikan bahawa proses di atas membenamkan data N-dimensi ke dalam ruang N+1-dimensi (z-dimensi tambahan). Untuk memudahkan pembezaan, penyelidik menggunakan x dan untuk mewakili data N-dimensi dan N+1 dimensi. Untuk mendapatkan garis medan elektrik berdimensi tinggi yang disebutkan di atas, persamaan Poisson berikut perlu diselesaikan:
di mana terletak Pengedaran data yang anda ingin hasilkan pada satah z=0
ialah fungsi berpotensi, yang merupakan matlamat penyelesaian penyelidik. Oleh kerana hanya arah garisan medan elektrik yang perlu diketahui, penyelidik memperoleh bentuk analisis kecerunan garisan medan elektrik (kecerunan fungsi potensi):
Medan elektrik Trajektori garisan (lihat Rajah 2) boleh diterangkan oleh ODE berikut:
Dalam teorem berikut, penyelidik membuktikan definisi ODE di atas Ia mewakili bijection taburan seragam pada hemisfera berdimensi tinggi dan taburan data pada satah z=0. Kesimpulan ini adalah sama seperti gerak hati dalam Rajah 1 dan 2: pengedaran data boleh dipulihkan melalui talian medan elektrik.
Latihan PFGM
Diberikan pengagihan data daripada The sampled set data telah digunakan oleh penyelidik untuk menganggarkan kecerunan garis medan elektrik sepadan dengan taburan data:
Kecerunan garis medan elektrik ialah sasaran pembelajaran. Kajian ini menggunakan fungsi perturb untuk memilih titik dalam ruang, dan fungsi kehilangan segi empat sama membolehkan rangkaian saraf mempelajari kecerunan garis medan elektrik yang dinormalkan dalam ruang
, algoritma khusus adalah seperti berikut:
Persampelan PFGM
Selepas mempelajari normalisasi untuk mempelajari kecerunan garis medan elektrik yang dinormalkan dalam ruang , taburan data boleh diambil sampel melalui ODE berikut:
ODE ini secara beransur-ansur menggerakkan sampel dari sfera besar di sepanjang garis medan elektrik ke satah z=0 dengan mengurangkan z. Di samping itu, kajian ini bercadang untuk memproyeksikan taburan seragam pada sfera besar ke atas satah z tertentu untuk memudahkan simulasi ODE dan mempercepatkan lagi pensampelan melalui penggantian berubah-ubah. Sila rujuk Bahagian 3.3 artikel untuk langkah-langkah tertentu.
Hasil eksperimen
Dalam Jadual 1, kajian ini menggunakan set data standard CIFAR-10 untuk menilai model yang berbeza. Pada set data ini, PFGM ialah model aliran ternormal boleh balik berprestasi terbaik , mencapai skor FID 2.35. PFGM berprestasi lebih baik daripada model resapan menggunakan struktur rangkaian yang sama (DDPM++/DDPM++ deep). Para penyelidik juga memerhatikan bahawa walaupun kualiti penjanaan SDE (persamaan pembezaan stokastik) bagi model resapan adalah serupa, PFGM mencapai pecutan 10 kali - 20 kali, mengimbangi kualiti dan kelajuan penjanaan dengan lebih baik. Di samping itu, penyelidik mendapati bahawa PFGM lebih teguh daripada model resapan pada struktur rangkaian dengan keupayaan ekspresif yang lebih lemah, dan masih lebih baik daripada model resapan di bawah keadaan yang sama pada set data berdimensi lebih tinggi. Sila lihat bahagian percubaan artikel untuk mendapatkan butiran. Dalam Rajah 3, kajian menggambarkan proses penjanaan imej PFGM.
Jadual 1: Kualiti sampel (FID, Inception) dan bilangan langkah pensampelan (NFE) pada data CIFAR-10
Rajah 3: Proses persampelan PFGM pada CIFAR-10, CelebA 64x64, bilik tidur LSUN 256x256
Kesimpulan
Kajian ini mencadangkan Generatif berasaskan Poisson model PFGM bagi Persamaan. Model ini meramalkan kecerunan garis medan elektrik yang dinormalkan dalam ruang lanjutan dimensi N+1 dan disampel oleh ODE yang sepadan bagi garisan medan elektrik. Dalam eksperimen, model yang dikaji dalam kajian ini pada masa ini merupakan model aliran terpiawai terbaik, dan mencapai kesan penjanaan yang lebih baik dan kelajuan pensampelan yang lebih pantas daripada model resapan pada struktur rangkaian yang sama. Proses pensampelan PFGM lebih teguh kepada hingar dan juga boleh diperluaskan kepada set data dimensi yang lebih tinggi. Penyelidik menjangkakan PFGM akan turut berprestasi baik dalam bidang aplikasi lain, seperti penjanaan molekul dan penjanaan data 3D.
Atas ialah kandungan terperinci gulung! Model penjanaan aliran MIT Poisson mengalahkan model resapan, dengan mengambil kira kualiti dan kelajuan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Memanfaatkan kekuatan visualisasi data dengan carta Microsoft Power BI Dalam dunia yang didorong oleh data hari ini, dengan berkesan menyampaikan maklumat yang rumit kepada penonton bukan teknikal adalah penting. Visualisasi data jambatan jurang ini, mengubah data mentah i

Sistem Pakar: menyelam yang mendalam ke dalam kuasa membuat keputusan AI Bayangkan mempunyai akses kepada nasihat pakar mengenai apa -apa, dari diagnosis perubatan kepada perancangan kewangan. Itulah kuasa sistem pakar dalam kecerdasan buatan. Sistem ini meniru pro

Pertama sekali, jelas bahawa ini berlaku dengan cepat. Pelbagai syarikat bercakap mengenai perkadaran kod mereka yang kini ditulis oleh AI, dan ini semakin meningkat pada klip pesat. Terdapat banyak anjakan pekerjaan

Industri filem, bersama semua sektor kreatif, dari pemasaran digital ke media sosial, berdiri di persimpangan teknologi. Sebagai kecerdasan buatan mula membentuk semula setiap aspek bercerita visual dan mengubah landskap hiburan

Kursus Online AI/ML percuma ISRO: Gerbang ke Inovasi Teknologi Geospatial Pertubuhan Penyelidikan Angkasa India (ISRO), melalui Institut Pengesan Jauh India (IIRS), menawarkan peluang yang hebat untuk pelajar dan profesional

Algoritma Carian Tempatan: Panduan Komprehensif Merancang acara berskala besar memerlukan pengagihan beban kerja yang cekap. Apabila pendekatan tradisional gagal, algoritma carian tempatan menawarkan penyelesaian yang kuat. Artikel ini meneroka pendakian bukit dan simul

Pelepasan ini termasuk tiga model yang berbeza, GPT-4.1, GPT-4.1 Mini dan GPT-4.1 Nano, menandakan langkah ke arah pengoptimuman khusus tugas dalam landskap model bahasa yang besar. Model-model ini tidak segera menggantikan antara muka yang dihadapi pengguna seperti

Gergasi Chip Nvidia berkata pada hari Isnin ia akan memulakan pembuatan superkomputer AI - mesin yang boleh memproses sejumlah besar data dan menjalankan algoritma kompleks - sepenuhnya dalam A.S. untuk kali pertama. Pengumuman itu datang selepas Presiden Trump Si


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa