Pengangkutan optimum dan penggunaannya kepada keadilan
Penterjemah |. Li Rui
Penilai |. Asal-usul teori pengangkutan optimum boleh dikesan kembali ke 1781, apabila saintis Perancis Gaspard Monge mengkaji kaedah yang dikatakan "menggerakkan bumi" dan membina kubu untuk tentera Napoleon. Secara keseluruhannya, pengangkutan yang optimum ialah masalah bagaimana untuk memindahkan semua sumber (seperti bijih besi) dari satu set asal (lombong) ke satu set destinasi (loji keluli) sambil meminimumkan jumlah jarak yang mesti dilalui oleh sumber. Secara matematik, penyelidik ingin mencari fungsi yang memetakan setiap asal ke destinasi sambil meminimumkan jumlah jarak antara asal dan destinasi yang sepadan. Walaupun penerangannya tidak berbahaya, kemajuan pada konsep asal masalah, yang dikenali sebagai konsep Menger, terhenti selama hampir 200 tahun.
Pada tahun 1940-an, ahli matematik Soviet Leonid Kantorovich menyesuaikan perumusan masalah ke dalam versi moden, yang kini dikenali sebagai teori Monge Kantorov, yang merupakan langkah pertama ke arah penyelesaian. Kebaharuan di sini ialah beberapa bijih besi dari lombong yang sama dibenarkan untuk dibekalkan kepada loji keluli yang berbeza. Sebagai contoh, 60% bijih besi dari lombong boleh disediakan kepada loji keluli, manakala baki 40% bijih besi dari lombong boleh disediakan kepada loji keluli yang lain. Secara matematik, ini bukan lagi fungsi, kerana asal yang sama kini memetakan ke destinasi yang berpotensi berbilang. Sebaliknya, ini dikenali sebagai gandingan antara taburan asal dan taburan destinasi, seperti yang ditunjukkan dalam rajah di bawah, memilih lombong daripada taburan biru (asal) dan bergerak secara menegak di sepanjang rajah menunjukkan di mana bijih besi dihantar Taburan; loji keluli (destinasi).
Sebagai sebahagian daripada perkembangan baharu ini, Kantorivich memperkenalkan konsep penting yang dipanggil jarak Wasserstein. Sama seperti jarak antara dua titik pada peta, jarak Wasserstein (juga dikenali sebagai jarak jentolak yang diilhamkan oleh senario asalnya) mengukur jarak antara dua taburan, seperti taburan biru dan magenta dalam kes ini. Jika semua lombong besi jauh dari semua loji besi, maka jarak Wasserstein antara taburan (lokasi) lombong dan taburan loji keluli akan menjadi besar. Walaupun dengan penambahbaikan baharu ini, masih tidak jelas sama ada terdapat cara terbaik untuk mengangkut sumber bijih besi, apatah lagi kaedah yang mana. Akhirnya, pada tahun 1990-an, teori ini mula berkembang pesat apabila penambahbaikan dalam analisis dan pengoptimuman matematik membawa kepada penyelesaian separa kepada masalah tersebut. Pada abad ke-21, pengangkutan optimum mula merebak ke bidang lain, seperti fizik zarah, dinamik bendalir, dan juga statistik dan pembelajaran mesin.
Pengangkutan optimum dalam era moden
Dengan ledakan teori baharu, pengangkutan optimum telah menjadi pusat kepada banyak algoritma statistik dan kecerdasan buatan baharu sejak dua dekad yang lalu. Dalam hampir setiap algoritma statistik, data dimodelkan, secara eksplisit atau tersirat, sebagai mempunyai beberapa taburan kebarangkalian asas. Sebagai contoh, jika data tentang pendapatan individu dikumpul di negara yang berbeza, akan terdapat pengagihan kebarangkalian pendapatan penduduk tersebut di setiap negara. Jika seseorang ingin membandingkan dua negara berdasarkan pengagihan pendapatan penduduk mereka, maka seseorang memerlukan cara untuk mengukur jurang antara kedua-dua pengagihan. Inilah sebabnya mengapa mengoptimumkan pengangkutan (terutamanya jarak Wasserstein) menjadi sangat berguna dalam sains data. Walau bagaimanapun, jarak Wasserstein bukanlah satu-satunya ukuran jarak antara dua taburan kebarangkalian. Malah, disebabkan kaitannya dengan teori fizik dan maklumat, dua pilihan jarak L-2 dan perbezaan Kullback-Leibler (KL) secara sejarah adalah lebih biasa. Kelebihan utama jarak Wasserstein berbanding alternatif ini ialah ia mengambil kira kedua-dua nilai dan kebarangkalian mereka semasa mengira jarak, manakala jarak L-2 dan perbezaan KL hanya mengambil kira kebarangkalian. Imej di bawah menunjukkan contoh set data buatan tentang pendapatan untuk tiga negara fiksyen.
Dalam kes ini, memandangkan taburan tidak bertindih, jarak L-2 (atau perbezaan KL) antara taburan biru dan magenta akan sama dengan taburan biru dan taburan magenta Jarak L-2 antara taburan hijau adalah lebih kurang sama. Sebaliknya, jarak Wasserstein antara taburan biru dan magenta akan jauh lebih kecil daripada jarak Wasserstein antara taburan biru dan hijau kerana terdapat perbezaan yang ketara antara nilai (pemisahan mendatar). Sifat jarak Wasserstein ini menjadikannya ideal untuk mengukur perbezaan antara taburan, terutamanya perbezaan antara set data.
Mencapai keadilan dengan pengangkutan yang optimum
Dengan jumlah data yang besar dikumpulkan setiap hari dan pembelajaran mesin menjadi lebih biasa dalam banyak industri, saintis data mesti lebih berhati-hati untuk tidak membiarkan mereka Analitis dan algoritma berterusan bias dan bias sedia ada dalam data. Sebagai contoh, jika set data kelulusan gadai janji rumah mengandungi maklumat tentang kaum pemohon, tetapi minoriti telah didiskriminasi dalam proses pengumpulan disebabkan kaedah yang digunakan atau berat sebelah tidak sedarkan diri, maka model yang dilatih pada data tersebut akan mencerminkan sisihan asas.
Mengoptimumkan penghantaran boleh membantu mengurangkan berat sebelah ini dan meningkatkan keadilan dalam dua cara. Kaedah pertama dan paling mudah ialah menggunakan jarak Wasserstein untuk menentukan sama ada terdapat potensi bias dalam set data. Sebagai contoh, seseorang boleh menganggarkan jarak Wasserstein antara pengagihan amaun pinjaman yang diluluskan untuk wanita dan pengagihan amaun pinjaman yang diluluskan untuk lelaki Jika jarak Wasserstein adalah sangat besar, iaitu, signifikan secara statistik, maka potensi bias mungkin disyaki. Idea untuk menguji sama ada terdapat perbezaan antara dua kumpulan diketahui dalam statistik sebagai ujian hipotesis dua sampel.
Sebagai alternatif, penghantaran optimum malah boleh digunakan untuk menguatkuasakan keadilan dalam model apabila set data asas itu sendiri berat sebelah. Ini berguna dari perspektif praktikal, kerana banyak set data dunia nyata menunjukkan beberapa tahap berat sebelah, dan mengumpul data tidak berat sebelah boleh menjadi sangat mahal, memakan masa atau tidak boleh dilaksanakan. Oleh itu, adalah lebih praktikal untuk menggunakan data sedia ada, tidak kira betapa tidak sempurnanya, dan cuba memastikan model itu mengurangkan berat sebelah ini. Ini dicapai dengan menguatkuasakan kekangan dalam model yang dipanggil pariti demografi yang kuat, yang memaksa ramalan model untuk bebas dari segi statistik daripada sebarang atribut sensitif. Satu pendekatan ialah memetakan taburan ramalan model kepada taburan ramalan terlaras yang tidak bergantung pada atribut sensitif. Walau bagaimanapun, pelarasan ramalan juga mengubah prestasi dan ketepatan model, jadi terdapat pertukaran antara prestasi model dan tahap model bergantung pada atribut sensitif (iaitu, keadilan).
Pastikan prestasi model optimum dengan menukar ramalan sesedikit mungkin sambil memastikan ramalan baharu bebas daripada atribut sensitif, menghasilkan penghantaran yang optimum. Pengedaran baharu yang diramalkan oleh model terlaras ini dipanggil Wasserstein centroid dan telah menjadi subjek kajian sepanjang dekad yang lalu. Pusat graviti Wasserstein adalah serupa dengan min bagi taburan kebarangkalian kerana ia meminimumkan jumlah jarak dari dirinya ke semua taburan lain. Imej di bawah menunjukkan tiga taburan (hijau, biru dan magenta) bersama-sama dengan pusat Wasserstein mereka (merah).
Dalam contoh di atas, katakan model dibina untuk meramalkan umur dan pendapatan seseorang berdasarkan set data yang mengandungi atribut sensitif, seperti status perkahwinan Terdapat tiga kemungkinan nilai: bujang (biru), berkahwin (hijau), dan balu/bercerai (magenta). Plot serakan menunjukkan taburan ramalan model untuk setiap nilai yang berbeza. Tetapi ingin menyesuaikan nilai-nilai ini supaya ramalan model baru buta kepada status perkahwinan seseorang, setiap taburan ini boleh dipetakan ke pusat graviti merah menggunakan pengangkutan optimum. Kerana semua nilai dipetakan kepada pengedaran yang sama, seseorang tidak lagi boleh menilai status perkahwinan seseorang berdasarkan pendapatan dan umur, atau sebaliknya. Pusat graviti mengekalkan kesetiaan model sebanyak mungkin.
Peningkatan data dan model pembelajaran mesin yang semakin meluas yang digunakan dalam perniagaan dan membuat keputusan kerajaan telah membawa kepada kemunculan persoalan sosial dan etika baharu tentang cara memastikan penggunaan model ini secara adil. Banyak set data mengandungi beberapa jenis berat sebelah disebabkan oleh sifat cara ia dikumpulkan, jadi adalah penting bahawa model yang dilatih mengenainya tidak memburukkan lagi berat sebelah ini atau sebarang diskriminasi sejarah. Pengangkutan optimum hanyalah satu cara untuk menyelesaikan masalah ini, yang telah berkembang sejak beberapa tahun kebelakangan ini. Hari ini, terdapat cara yang pantas dan cekap untuk mengira peta dan jarak pengangkutan yang optimum, menjadikan pendekatan ini sesuai untuk set data besar moden. Memandangkan orang semakin bergantung pada model dan cerapan berasaskan data, keadilan telah dan akan terus menjadi isu teras dalam sains data, dan pengangkutan optimum akan memainkan peranan penting dalam mencapai matlamat ini.
Tajuk asal: Pengangkutan Optimum dan Penerapannya untuk Kesaksamaan, pengarang: Terrence Alsup
Atas ialah kandungan terperinci Pengangkutan optimum dan penggunaannya kepada keadilan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Dalam buku seminal John Rawls pada tahun 1971 The Theory of Justice, beliau mencadangkan percubaan pemikiran yang harus kita ambil sebagai inti reka bentuk AI hari ini dan menggunakan keputusan: tudung kejahilan. Falsafah ini menyediakan alat yang mudah untuk memahami ekuiti dan juga menyediakan pelan tindakan untuk pemimpin untuk menggunakan pemahaman ini untuk mereka bentuk dan melaksanakan AI dengan cara yang saksama. Bayangkan anda membuat peraturan untuk masyarakat baru. Tetapi ada premis: anda tidak tahu terlebih dahulu apa peranan yang akan anda mainkan dalam masyarakat ini. Anda mungkin menjadi kaya atau miskin, sihat atau kurang upaya, milik majoriti atau minoriti marginal. Beroperasi di bawah "VEIL OF KETIGA" ini menghalang pembuat peraturan daripada membuat keputusan yang memberi manfaat kepada diri mereka sendiri. Sebaliknya, orang akan lebih bermotivasi untuk merumuskan orang ramai

Banyak syarikat yang mengkhususkan diri dalam Automasi Proses Robot (RPA), menawarkan bot untuk mengautomasikan tugas berulang -UIPATH, Automasi di mana sahaja, Prism Blue, dan lain -lain. Sementara itu, proses perlombongan, orkestrasi, dan pemprosesan dokumen pintar Special

Masa depan AI bergerak melampaui ramalan kata mudah dan simulasi perbualan; Ejen AI muncul, mampu tindakan bebas dan penyelesaian tugas. Peralihan ini sudah jelas dalam alat seperti Claude Anthropic. Ejen AI: Penyelidikan a

Kemajuan teknologi yang pesat memerlukan perspektif yang berpandangan ke hadapan pada masa depan kerja. Apa yang berlaku apabila AI melampaui peningkatan produktiviti semata -mata dan mula membentuk struktur masyarakat kita? Buku yang akan datang Topher McDougal, Gaia Wakes:

Klasifikasi produk, sering melibatkan kod kompleks seperti "HS 8471.30" dari sistem seperti sistem harmoni (HS), adalah penting untuk perdagangan antarabangsa dan jualan domestik. Kod ini memastikan permohonan cukai yang betul, memberi kesan kepada setiap inv

Masa Depan Penggunaan Tenaga di Pusat Data dan Pelaburan Teknologi Iklim Artikel ini menerangkan lonjakan penggunaan tenaga di pusat data yang didorong oleh AI dan kesannya terhadap perubahan iklim, dan menganalisis penyelesaian inovatif dan cadangan dasar untuk menangani cabaran ini. Cabaran Permintaan Tenaga: Pusat data besar-besaran dan ultra-besar menggunakan kuasa besar, setanding dengan jumlah beratus-ratus ribu keluarga Amerika Utara yang biasa, dan pusat-pusat skala ultra-besar AI yang muncul menggunakan puluhan kali lebih banyak kuasa daripada ini. Dalam lapan bulan pertama 2024, Microsoft, Meta, Google dan Amazon telah melabur kira -kira AS $ 125 bilion dalam pembinaan dan operasi pusat data AI (JP Morgan, 2024) (Jadual 1). Permintaan tenaga yang semakin meningkat adalah satu cabaran dan peluang. Menurut Canary Media, elektrik yang menjulang

AI Generatif merevolusi pengeluaran filem dan televisyen. Model Ray 2 Luma, serta Runway's Gen-4, Openai's Sora, Veo Google dan model-model baru yang lain, meningkatkan kualiti video yang dihasilkan pada kelajuan yang belum pernah terjadi sebelumnya. Model-model ini dengan mudah boleh mewujudkan kesan khas yang kompleks dan adegan yang realistik, walaupun klip video pendek dan kesan gerakan yang diperolehi oleh kamera telah dicapai. Walaupun manipulasi dan konsistensi alat -alat ini masih perlu diperbaiki, kelajuan kemajuan adalah menakjubkan. Video generatif menjadi medium bebas. Sesetengah model baik pada pengeluaran animasi, sementara yang lain baik pada imej aksi langsung. Perlu diingat bahawa Firefly Adobe dan Moonvalley's Ma

Pengalaman Pengguna CHATGPT Menolak: Adakah Degradasi Model atau Harapan Pengguna? Baru -baru ini, sebilangan besar pengguna berbayar ChatGPT telah mengadu tentang kemerosotan prestasi mereka, yang telah menarik perhatian yang meluas. Pengguna melaporkan tindak balas yang lebih perlahan terhadap model, jawapan yang lebih pendek, kekurangan bantuan, dan lebih banyak halusinasi. Sesetengah pengguna menyatakan rasa tidak puas hati di media sosial, menunjukkan bahawa ChatGPT telah menjadi "terlalu menyanjung" dan cenderung untuk mengesahkan pandangan pengguna dan bukannya memberikan maklum balas kritikal. Ini bukan sahaja memberi kesan kepada pengalaman pengguna, tetapi juga membawa kerugian sebenar kepada pelanggan korporat, seperti mengurangkan produktiviti dan pembaziran sumber pengkomputeran. Bukti kemerosotan prestasi Ramai pengguna telah melaporkan kemerosotan yang ketara dalam prestasi CHATGPT, terutamanya dalam model yang lebih lama seperti GPT-4 (yang tidak lama lagi akan dihentikan dari perkhidmatan pada akhir bulan ini). ini


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa
