


Bagaimana untuk membahagikan set data dengan betul? Ringkasan tiga kaedah biasa
Menguraikan set data menjadi set latihan boleh membantu kami memahami model, yang penting untuk cara model membuat generalisasi kepada data baharu yang tidak kelihatan. Sesuatu model mungkin tidak digeneralisasikan dengan baik kepada data baru yang tidak kelihatan jika ia terlalu dipasang. Oleh itu ramalan yang baik tidak boleh dibuat.
Memiliki strategi pengesahan yang betul ialah langkah pertama untuk berjaya mencipta ramalan yang baik dan menggunakan nilai perniagaan model AI. Artikel ini telah menyusun beberapa strategi pemisahan data biasa.
Latihan mudah dan pemisahan ujian
Bahagikan set data kepada 2 bahagian: latihan dan pengesahan, dengan 80% latihan dan 20% pengesahan. Anda boleh melakukan ini menggunakan pensampelan rawak Scikit.
Pertama sekali, benih rawak perlu diperbaiki, jika tidak, pemisahan data yang sama tidak boleh diperoleh dengan perbandingan dan hasilnya tidak boleh dihasilkan semula semasa nyahpepijat. Jika set data kecil, tiada jaminan bahawa pemisahan pengesahan boleh tidak dikaitkan dengan pemisahan latihan. Jika data tidak seimbang, anda tidak akan mendapat nisbah pisah yang sama.
Pemisahan yang begitu mudah hanya boleh membantu kami mengembangkan dan nyahpepijat Latihan sebenar tidak cukup sempurna, jadi kaedah pemisahan berikut boleh membantu kami menamatkan masalah ini.
Pengesahan silang K-lipat
Pisah set data kepada partition k. Dalam imej di bawah, set data dibahagikan kepada 5 partition.
Pilih satu partition sebagai set data pengesahan, manakala partition lain ialah set data latihan. Ini akan melatih model pada setiap set partition yang berbeza.
Akhir sekali, model K yang berbeza akan diperolehi, dan model ini akan digunakan bersama-sama menggunakan kaedah penyepaduan apabila membuat penaakulan dan ramalan kemudian.
K biasanya ditetapkan kepada [3,5,7,10,20]
Jika anda ingin menyemak prestasi model dengan berat sebelah rendah, gunakan K yang lebih tinggi [20]. Jika anda membina model untuk pemilihan pembolehubah, gunakan k rendah [3,5] dan model akan mempunyai varians yang lebih rendah.
Kelebihan:
- Dengan purata ramalan model, anda boleh meningkatkan prestasi model pada data yang tidak kelihatan yang diambil daripada pengedaran yang sama.
- Ini adalah kaedah yang digunakan secara meluas untuk mendapatkan model pengeluaran yang baik.
- Anda boleh menggunakan teknik penyepaduan yang berbeza untuk membuat ramalan bagi setiap data dalam set data dan menggunakan ramalan ini untuk menambah baik model, yang dipanggil OOF (ramalan lipatan luar).
Soalan:
- Jika anda mempunyai set data tidak seimbang, gunakan Stratified-kFold.
- Jika anda melatih semula model pada semua set data, maka anda tidak boleh membandingkan prestasinya dengan mana-mana model yang dilatih dengan k-Fold. Kerana model ini dilatih pada k-1, bukan keseluruhan set data.
Stratified-kFold
boleh mengekalkan nisbah antara kelas yang berbeza dalam setiap lipatan. Jika set data tidak seimbang, katakan Kelas1 mempunyai 10 contoh dan Kelas2 mempunyai 100 contoh. Stratified-kFold mencipta setiap klasifikasi lipatan dengan nisbah yang sama dengan set data asal
Idea ini serupa dengan pengesahan silang K-fold, tetapi dengan nisbah yang sama untuk setiap lipatan seperti set data asal.
Setiap pemisahan mengekalkan nisbah awal antara kelas. Jika set data anda besar, pengesahan silang K-fold juga boleh mengekalkan perkadaran, tetapi ini adalah stokastik, manakala Stratified-kFold adalah deterministik dan boleh digunakan dengan set data kecil.
Bootstrap dan Subsampling
Bootstrap dan Subsampling adalah serupa dengan pengesahan silang K-Fold, tetapi mereka tidak mempunyai lipatan tetap. Ia secara rawak memilih beberapa data daripada set data, menggunakan data lain sebagai pengesahan dan mengulanginya sebanyak n kali
Bootstrap=pensampelan berselang-seli, yang telah kami perkenalkan secara terperinci dalam artikel sebelumnya.
Bilakah saya harus menggunakan dia? Bootstrap dan Subsamlping hanya boleh digunakan jika ralat piawai anggaran ralat metrik adalah besar. Ini mungkin disebabkan oleh outlier dalam set data.
Ringkasan
Biasanya dalam pembelajaran mesin, pengesahan silang k-fold digunakan sebagai titik permulaan Jika set data tidak seimbang, Stratified-kFold digunakan. Bootstrap atau kaedah lain boleh digunakan.
Atas ialah kandungan terperinci Bagaimana untuk membahagikan set data dengan betul? Ringkasan tiga kaedah biasa. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Laporan Indeks Perisikan Buatan 2025 yang dikeluarkan oleh Stanford University Institute for Manusia Berorientasikan Kecerdasan Buatan memberikan gambaran yang baik tentang revolusi kecerdasan buatan yang berterusan. Mari kita menafsirkannya dalam empat konsep mudah: kognisi (memahami apa yang sedang berlaku), penghargaan (melihat faedah), penerimaan (cabaran muka), dan tanggungjawab (cari tanggungjawab kita). Kognisi: Kecerdasan buatan di mana -mana dan berkembang pesat Kita perlu menyedari betapa cepatnya kecerdasan buatan sedang berkembang dan menyebarkan. Sistem kecerdasan buatan sentiasa bertambah baik, mencapai hasil yang sangat baik dalam ujian matematik dan pemikiran kompleks, dan hanya setahun yang lalu mereka gagal dalam ujian ini. Bayangkan AI menyelesaikan masalah pengekodan kompleks atau masalah saintifik peringkat siswazah-sejak tahun 2023

Meta's Llama 3.2: Lompat ke hadapan dalam Multimodal dan Mobile AI META baru -baru ini melancarkan Llama 3.2, kemajuan yang ketara dalam AI yang memaparkan keupayaan penglihatan yang kuat dan model teks ringan yang dioptimumkan untuk peranti mudah alih. Membina kejayaan o

Landskap AI minggu ini: Badai kemajuan, pertimbangan etika, dan perdebatan pengawalseliaan. Pemain utama seperti Openai, Google, Meta, dan Microsoft telah melepaskan kemas kini, dari model baru yang terobosan ke peralihan penting di LE

Ilusi yang menghiburkan sambungan: Adakah kita benar -benar berkembang dalam hubungan kita dengan AI? Soalan ini mencabar nada optimis Simposium MIT Media Lab "yang memajukan AI (AHA)". Manakala acara itu mempamerkan cutting-EDG

Pengenalan Bayangkan anda seorang saintis atau jurutera menangani masalah kompleks - persamaan pembezaan, cabaran pengoptimuman, atau analisis Fourier. Kemudahan penggunaan dan kemampuan grafik Python menarik, tetapi tugas -tugas ini menuntut alat yang berkuasa

Meta's Llama 3.2: Powerhouse AI Multimodal Model multimodal terbaru Meta, Llama 3.2, mewakili kemajuan yang ketara dalam AI, yang membanggakan pemahaman bahasa yang dipertingkatkan, ketepatan yang lebih baik, dan keupayaan penjanaan teks yang unggul. Keupayaannya t

Jaminan Kualiti Data: Pemeriksaan Automatik dengan Dagster dan Harapan Hebat Mengekalkan kualiti data yang tinggi adalah penting untuk perniagaan yang didorong data. Apabila jumlah data dan sumber meningkat, kawalan kualiti manual menjadi tidak cekap dan terdedah kepada kesilapan.

Main Frames: Wira Unsung Revolusi AI Walaupun pelayan cemerlang dalam aplikasi tujuan umum dan mengendalikan pelbagai pelanggan, kerangka utama dibina untuk tugas tinggi, misi kritikal. Sistem yang kuat ini sering dijumpai di Heavil


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)