


Bagaimana untuk meningkatkan kecekapan model dengan sumber yang terhad? Artikel yang meringkaskan kaedah NLP yang cekap
Melatih model pembelajaran mendalam yang semakin besar telah menjadi trend baru muncul dalam dekad yang lalu. Seperti yang ditunjukkan dalam rajah di bawah, peningkatan berterusan dalam bilangan parameter model menjadikan prestasi rangkaian saraf lebih baik dan lebih baik, dan juga menjana beberapa arah penyelidikan baharu, tetapi terdapat juga lebih banyak masalah dengan model.
Pertama sekali, model sedemikian selalunya mempunyai akses terhad dan bukan sumber terbuka, atau walaupun ia sumber terbuka, ia masih memerlukan banyak sumber pengkomputeran untuk berlari. Kedua, parameter model rangkaian ini tidak universal, jadi sejumlah besar sumber diperlukan untuk latihan dan derivasi. Ketiga, model tidak boleh dikembangkan tanpa had kerana saiz parameter dihadkan oleh perkakasan. Untuk menangani isu ini, trend penyelidikan baharu yang memfokuskan pada peningkatan kecekapan sedang muncul.
Baru-baru ini, lebih daripada sedozen penyelidik dari Hebrew University, University of Washington dan institusi lain bersama-sama menulis ulasan, meringkaskan kaedah yang cekap dalam bidang pemprosesan bahasa semula jadi (NLP).
Alamat kertas: https://arxiv.org/pdf/2209.00099.pdf
Kecekapan biasanya merujuk kepada sistem input Hubungan antara sumber dan keluaran sistem Sistem yang cekap boleh menghasilkan output tanpa membazirkan sumber. Dalam bidang NLP, kami menganggap kecekapan sebagai hubungan antara kos model dan hasil yang dihasilkannya.
Persamaan (1) menerangkan kos latihan (Kos) model kecerdasan buatan untuk menghasilkan keputusan tertentu (R) dan tiga (tidak lengkap) faktor Berkadar dengan :
(1) Kos melaksanakan model pada satu sampel (E);
(2) Saiz set data latihan (D);
(3) Bilangan larian latihan (H) diperlukan untuk pemilihan model atau pelarasan parameter.
Kos(·) kemudiannya boleh diukur mengikut berbilang dimensi, seperti kos pengiraan, masa atau persekitaran, yang setiap satunya boleh dikira dengan lebih lanjut dalam pelbagai cara. Sebagai contoh, kos pengiraan boleh termasuk jumlah operasi titik terapung (FLOP) atau bilangan parameter model. Memandangkan menggunakan metrik kos tunggal boleh mengelirukan, kajian ini mengumpul dan mengatur kerja pada pelbagai aspek NLP yang cekap dan membincangkan aspek mana yang berfaedah untuk kes penggunaan.
Kajian ini bertujuan untuk memberi pengenalan asas kepada pelbagai kaedah untuk meningkatkan kecekapan NLP Oleh itu, kajian ini menganjurkan tinjauan ini mengikut saluran paip model NLP biasa (Rajah 2 di bawah) dan memperkenalkan bagaimana. untuk menjadikan setiap peringkat Lebih cekap kaedah sedia ada.
Kerja ini menyediakan panduan kecekapan praktikal untuk penyelidik NLP, terutamanya untuk dua jenis pembaca:
(1 ) penyelidik dari pelbagai bidang NLP untuk membantu mereka bekerja dalam persekitaran terhad sumber: bergantung pada kesesakan sumber, pembaca boleh melompat terus ke aspek yang diliputi oleh saluran paip NLP. Sebagai contoh, jika had utama ialah masa inferens, Bab 6 kertas kerja menerangkan peningkatan kecekapan yang berkaitan.
(2) Penyelidik berminat untuk meningkatkan kecekapan kaedah NLP. Kertas kerja ini boleh menjadi titik masuk untuk mengenal pasti peluang untuk hala tuju penyelidikan baharu.
Rajah 3 di bawah menggariskan kaedah NLP cekap yang diringkaskan dalam kajian ini.
Di samping itu, walaupun pilihan perkakasan mempunyai kesan yang besar terhadap kecekapan model, kebanyakan penyelidik NLP tidak mengawal secara langsung keputusan tentang perkakasan, dan Kebanyakan pengoptimuman perkakasan berguna untuk semua peringkat dalam saluran paip NLP. Oleh itu, kajian ini memfokuskan kerja pada algoritma tetapi menyediakan pengenalan ringkas kepada pengoptimuman perkakasan dalam Bab 7. Akhir sekali, makalah ini membincangkan lebih lanjut cara mengukur kecekapan, apakah faktor yang perlu dipertimbangkan semasa proses penilaian, dan cara memutuskan model yang paling sesuai.
Pembaca yang berminat boleh membaca teks asal kertas untuk mengetahui lebih banyak butiran penyelidikan.
Atas ialah kandungan terperinci Bagaimana untuk meningkatkan kecekapan model dengan sumber yang terhad? Artikel yang meringkaskan kaedah NLP yang cekap. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Laporan Indeks Perisikan Buatan 2025 yang dikeluarkan oleh Stanford University Institute for Manusia Berorientasikan Kecerdasan Buatan memberikan gambaran yang baik tentang revolusi kecerdasan buatan yang berterusan. Mari kita menafsirkannya dalam empat konsep mudah: kognisi (memahami apa yang sedang berlaku), penghargaan (melihat faedah), penerimaan (cabaran muka), dan tanggungjawab (cari tanggungjawab kita). Kognisi: Kecerdasan buatan di mana -mana dan berkembang pesat Kita perlu menyedari betapa cepatnya kecerdasan buatan sedang berkembang dan menyebarkan. Sistem kecerdasan buatan sentiasa bertambah baik, mencapai hasil yang sangat baik dalam ujian matematik dan pemikiran kompleks, dan hanya setahun yang lalu mereka gagal dalam ujian ini. Bayangkan AI menyelesaikan masalah pengekodan kompleks atau masalah saintifik peringkat siswazah-sejak tahun 2023

Meta's Llama 3.2: Lompat ke hadapan dalam Multimodal dan Mobile AI META baru -baru ini melancarkan Llama 3.2, kemajuan yang ketara dalam AI yang memaparkan keupayaan penglihatan yang kuat dan model teks ringan yang dioptimumkan untuk peranti mudah alih. Membina kejayaan o

Landskap AI minggu ini: Badai kemajuan, pertimbangan etika, dan perdebatan pengawalseliaan. Pemain utama seperti Openai, Google, Meta, dan Microsoft telah melepaskan kemas kini, dari model baru yang terobosan ke peralihan penting di LE

Ilusi yang menghiburkan sambungan: Adakah kita benar -benar berkembang dalam hubungan kita dengan AI? Soalan ini mencabar nada optimis Simposium MIT Media Lab "yang memajukan AI (AHA)". Manakala acara itu mempamerkan cutting-EDG

Pengenalan Bayangkan anda seorang saintis atau jurutera menangani masalah kompleks - persamaan pembezaan, cabaran pengoptimuman, atau analisis Fourier. Kemudahan penggunaan dan kemampuan grafik Python menarik, tetapi tugas -tugas ini menuntut alat yang berkuasa

Meta's Llama 3.2: Powerhouse AI Multimodal Model multimodal terbaru Meta, Llama 3.2, mewakili kemajuan yang ketara dalam AI, yang membanggakan pemahaman bahasa yang dipertingkatkan, ketepatan yang lebih baik, dan keupayaan penjanaan teks yang unggul. Keupayaannya t

Jaminan Kualiti Data: Pemeriksaan Automatik dengan Dagster dan Harapan Hebat Mengekalkan kualiti data yang tinggi adalah penting untuk perniagaan yang didorong data. Apabila jumlah data dan sumber meningkat, kawalan kualiti manual menjadi tidak cekap dan terdedah kepada kesilapan.

Main Frames: Wira Unsung Revolusi AI Walaupun pelayan cemerlang dalam aplikasi tujuan umum dan mengendalikan pelbagai pelanggan, kerangka utama dibina untuk tugas tinggi, misi kritikal. Sistem yang kuat ini sering dijumpai di Heavil


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Dreamweaver CS6
Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.