Semua orang yang menggunakan DALL-E untuk mencipta imej atau membiarkan ChatGPT menulis kertas penggal memerlukan banyak sumber awan. Siapa yang akan membayar untuk semua ini?
Penterjemah |. Bugatti
Penilai |. Sun Shujuan
Kecerdasan buatan (AI) ialah teknologi intensif sumber untuk mana-mana platform (termasuk awan awam) . Kebanyakan teknologi AI memerlukan sejumlah besar pengiraan inferens, dengan itu meningkatkan permintaan untuk pemproses, rangkaian dan sumber storan, akhirnya meningkatkan bil elektrik, kos infrastruktur dan pelepasan karbon.
Kebangkitan sistem AI generatif seperti ChatGPT sekali lagi membawa isu ini ke hadapan. Memandangkan populariti teknologi ini dan kemungkinan penggunaannya secara meluas oleh syarikat, kerajaan dan orang awam, kita boleh menjangkakan lengkungan pertumbuhan penggunaan kuasa yang membimbangkan.
AI boleh dilaksanakan sejak tahun 1970-an, tetapi pada mulanya tidak mempunyai banyak kesan komersial, memandangkan sistem AI yang matang dan lengkap memerlukan banyak sumber untuk berfungsi dengan baik. Saya masih ingat sistem berasaskan AI yang saya reka pada usia 20-an yang memerlukan lebih $40 juta dalam perkakasan, perisian dan ruang pusat data untuk menjalankannya. Secara kebetulan, projek ini, seperti banyak projek AI lain, tidak pernah melihat tarikh keluaran, dan penyelesaian komersil itu tidak berdaya maju.
Pengkomputeran awan mengubah segala-galanya. Dengan awan awam, tugasan yang dahulunya di luar jangkauan kini boleh dikendalikan dengan keberkesanan kos yang cukup ketara. Sebenarnya, seperti yang anda duga, peningkatan pengkomputeran awan bertepatan dengan peningkatan AI dalam tempoh 10 hingga 15 tahun yang lalu, dan saya akan mengatakan kedua-duanya kini berkait rapat.
Kemampanan dan Kos Sumber Awan
Ia tidak memerlukan banyak penyelidikan untuk meramalkan perkara yang akan berlaku di kawasan ini. Permintaan pasaran untuk perkhidmatan AI akan melonjak, seperti sistem AI generatif yang kini sangat popular dan sistem AI dan pembelajaran mesin yang lain. Mengetuai pertuduhan ialah syarikat yang mencari kelebihan melalui inovasi, seperti rantaian bekalan pintar, atau bahkan ribuan pelajar kolej yang mencari sistem AI generatif untuk menulis kertas penggal mereka.
Permintaan yang meningkat untuk AI bermakna peningkatan permintaan untuk sumber yang digunakan oleh sistem AI ini, seperti awan awam dan perkhidmatan yang mereka sediakan. Permintaan ini mungkin akan dipenuhi oleh lebih banyak pusat data yang menempatkan pelayan yang haus kuasa dan peralatan rangkaian.
Penyedia awan awam, seperti mana-mana penyedia sumber utiliti lain, akan menaikkan harga apabila permintaan meningkat, sama seperti kita melihat kenaikan bermusim dalam bil elektrik kediaman (sekali lagi berdasarkan permintaan). Oleh itu, kami biasanya mengawal penggunaan elektrik dan menaikkan suhu penghawa dingin lebih tinggi pada musim panas.
Walau bagaimanapun, kos pengkomputeran awan yang lebih tinggi mungkin tidak mempunyai kesan yang sama pada perniagaan. Perusahaan mungkin mendapati bahawa sistem AI ini tidak boleh diketepikan, tetapi perlu untuk memacu proses perniagaan utama tertentu. Dalam kebanyakan kes, mereka mungkin cuba menjimatkan wang secara dalaman, mungkin dengan mengurangkan jumlah pekerja untuk mengimbangi kos sistem AI. Bukan rahsia lagi bahawa sistem AI generatif akan menggantikan ramai pekerja maklumat tidak lama lagi.
Apa yang boleh kita lakukan?
Jika permintaan sumber untuk menjalankan sistem AI mengakibatkan kos pengkomputeran dan pelepasan karbon yang lebih tinggi, apakah yang boleh kita lakukan mengenainya? Jawapannya mungkin terletak pada mencari cara yang lebih cekap untuk AI menggunakan sepenuhnya sumber seperti pemproses, rangkaian dan storan.
Sebagai contoh, pensampelan saluran paip boleh mempercepatkan pembelajaran mendalam dengan mengurangkan jumlah data yang diproses. Penyelidikan daripada Institut Teknologi Massachusetts (MIT) dan IBM menunjukkan bahawa menggunakan pendekatan ini boleh mengurangkan sumber yang diperlukan untuk menjalankan rangkaian saraf pada set data yang besar. Walau bagaimanapun, ini juga mengehadkan ketepatan, yang boleh diterima untuk sesetengah kes penggunaan perniagaan tetapi tidak untuk semua.
Satu lagi pendekatan yang telah digunakan dalam bidang teknologi lain ialah pengkomputeran dalam memori. Seni bina ini boleh mempercepatkan pemprosesan AI dengan mengelakkan data bergerak masuk dan keluar dari memori. Sebaliknya, pengiraan AI berjalan terus dalam modul memori, yang mempercepatkan perkara dengan ketara.
Pendekatan lain sedang dibangunkan, seperti menukar pemproses fizikal (menggunakan pemproses bersama untuk mengendalikan pengiraan AI untuk meningkatkan kelajuan) atau mengguna pakai model pengkomputeran generasi seterusnya seperti pengkomputeran kuantum. Anda boleh mengharapkan penyedia awan awam yang besar untuk mengumumkan teknologi yang menangani banyak isu ini dalam masa terdekat.
Apa yang perlu anda lakukan?
Artikel ini bukan tentang mengelakkan AI untuk mengurangkan kos pengkomputeran awan atau menyelamatkan planet ini. AI ialah kaedah pengkomputeran asas yang boleh digunakan oleh kebanyakan perniagaan untuk mencipta nilai yang luar biasa.
Adalah disyorkan bahawa apabila menjalankan projek pembangunan berasaskan AI atau projek pembangunan sistem AI baharu, anda harus memahami dengan jelas kesan ke atas kos dan kemampanan, kerana kedua-duanya berkait rapat. Anda perlu membuat pilihan kos/faedah, yang benar-benar kembali kepada topik lama tentang nilai yang boleh anda bawa kepada syarikat untuk kos dan risiko yang perlu anda ambil. Tiada yang baru di sini.
Saya percaya bahawa masalah ini sebahagian besarnya dijangka dapat diselesaikan melalui inovasi, sama ada inovasi itu ialah pengkomputeran dalam ingatan, pengkomputeran kuantum atau teknologi lain yang masih belum muncul. Pembekal teknologi AI dan penyedia pengkomputeran awan berminat untuk menjadikan AI lebih kos efektif, cekap tenaga dan mesra alam, yang merupakan berita baik.
Tajuk asal: Kos dan kemampanan AI generatif, pengarang: David S. Linthicum
Atas ialah kandungan terperinci Kos dan kemampanan AI generatif. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pengenalan Dalam kejuruteraan segera, "Grafik Pemikiran" merujuk kepada pendekatan baru yang menggunakan teori graf untuk struktur dan membimbing proses penalaran AI. Tidak seperti kaedah tradisional, yang sering melibatkan linear

Pengenalan Tahniah! Anda menjalankan perniagaan yang berjaya. Melalui laman web anda, kempen media sosial, webinar, persidangan, sumber percuma, dan sumber lain, anda mengumpul 5000 ID e -mel setiap hari. Langkah jelas seterusnya adalah

Pengenalan Dalam persekitaran pembangunan perisian pantas hari ini, memastikan prestasi aplikasi yang optimum adalah penting. Memantau metrik masa nyata seperti masa tindak balas, kadar ralat, dan penggunaan sumber dapat membantu utama

"Berapa banyak pengguna yang anda ada?" Dia ditakdirkan. "Saya fikir kali terakhir yang kami katakan ialah 500 juta aktif mingguan, dan ia berkembang dengan pesat," jawab Altman. "Anda memberitahu saya bahawa ia seperti dua kali ganda dalam beberapa minggu sahaja," kata Anderson. "Saya mengatakan bahawa priv

Pengenalan Mistral telah mengeluarkan model multimodal yang pertama, iaitu Pixtral-12B-2409. Model ini dibina atas parameter 12 bilion Mistral, NEMO 12B. Apa yang membezakan model ini? Ia kini boleh mengambil kedua -dua gambar dan Tex

Bayangkan mempunyai pembantu berkuasa AI yang bukan sahaja memberi respons kepada pertanyaan anda tetapi juga mengumpulkan maklumat, melaksanakan tugas, dan juga mengendalikan pelbagai jenis teks, imej, dan kod. Bunyi futuristik? Dalam ini a

Pengenalan Industri kewangan adalah asas kepada mana -mana pembangunan negara, kerana ia memacu pertumbuhan ekonomi dengan memudahkan urus niaga yang cekap dan ketersediaan kredit. The ease with which transactions occur and credit

Pengenalan Data dijana pada kadar yang belum pernah terjadi sebelumnya dari sumber seperti media sosial, urus niaga kewangan, dan platform e-dagang. Mengendalikan aliran maklumat yang berterusan ini adalah satu cabaran, tetapi ia menawarkan


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Dreamweaver CS6
Alat pembangunan web visual

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.