Rumah >pembangunan bahagian belakang >Tutorial Python >Ringkasan mata pengetahuan pelbagai proses Python

Ringkasan mata pengetahuan pelbagai proses Python

WBOY
WBOYke hadapan
2022-05-17 17:49:142481semak imbas

Artikel ini membawa anda pengetahuan yang berkaitan tentang python, yang terutamanya memperkenalkan kandungan yang berkaitan tentang pelbagai proses, termasuk apa itu berbilang proses, penciptaan proses, penyegerakan antara proses dan proses Chi dan sebagainya. , mari kita sama-sama melihatnya, semoga bermanfaat untuk semua.

Ringkasan mata pengetahuan pelbagai proses Python

Pembelajaran yang disyorkan: tutorial video python

Apakah itu pelbagai proses?

1 Proses

Program: Contohnya, xxx.py ialah program, iaitu proses

statik. : Selepas program dijalankan, sumber yang digunakan oleh kod dipanggil proses, yang merupakan unit asas untuk sistem pengendalian memperuntukkan sumber. Bukan sahaja multitasking boleh diselesaikan melalui benang, tetapi proses juga boleh dilakukan

2 Status proses

Semasa kerja, bilangan tugas selalunya lebih besar daripada bilangan teras bagi. CPU, iaitu, mesti ada beberapa tugasan sedang dilaksanakan dan Beberapa tugas lain sedang menunggu CPU untuk melaksanakan, menghasilkan keadaan yang berbeza
Ringkasan mata pengetahuan pelbagai proses Python

  • Keadaan sedia : keadaan berjalan telah menjadi perlahan dan sedang berjalan Menunggu cpu untuk dilaksanakan
  • Keadaan pelaksanaan: CPU sedang melaksanakan fungsinya
  • Keadaan menunggu : Menunggu syarat tertentu untuk dipenuhi, seperti program sleeping , ia berada dalam keadaan menunggu pada masa ini

2. Penciptaan proses - multiprocessing

1 . Penerangan sintaks kelas proses

multiprocessing Modul dicipta oleh objek Process kemudian memanggil kaedah start()nya untuk menghasilkan proses, Process adalah sama dengan threading.Thread API.

Format sintaks:multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

Penerangan parameter:

  • group: Nyatakan Kumpulan proses tidak digunakan dalam kebanyakan kes.
  • target: Jika rujukan fungsi diluluskan, proses anak boleh ditugaskan untuk melaksanakan kod di sini
  • name: Tetapkan tetapan untuk proses. Tetapkan nama, anda tidak perlu menetapkannya
  • args: Lulus parameter ke fungsi yang ditentukan oleh sasaran dalam bentuk tuple
  • kwargs: Hantarkan nama kepada fungsi yang ditentukan oleh Parameter sasaran

multiprocessing.Process object mempunyai kaedah dan atribut berikut:

Kod keluar proses anak
Nama/atribut kaedah Penjelasan
run() Pelaksanaan khusus kaedah proses
方法名/属性 说明
run() 进程具体执行的方法
start() 启动子进程实例(创建子进程)
join([timeout]) 如果可选参数 timeout 是默认值 None,则将阻塞至调用 join() 方法的进程终止;如果 timeout 是一个正数,则最多会阻塞 timeout 秒
name 当前进程的别名,默认为Process-N,N为从1开始递增的整数
pid 当前进程的pid(进程号)
is_alive() 判断进程子进程是否还在活着
exitcode 子进程的退出代码
daemon 进程的守护标志,是一个布尔值。
authkey 进程的身份验证密钥。
sentinel 系统对象的数字句柄,当进程结束时将变为 ready。
terminate() 不管任务是否完成,立即终止子进程
kill() 与 terminate() 相同,但在 Unix 上使用 SIGKILL 信号。
close() 关闭 Process 对象,释放与之关联的所有资源
Mulakan contoh proses anak (buat anak proses)
join([timeout]) Jika tamat masa parameter pilihan ialah nilai lalai Tiada, ia akan menyekat sehingga proses memanggil kaedah join() ditamatkan; jika tamat masa ialah nombor positif, maka paling banyak akan menyekat saat tamat masa
alias proses semasa, lalai ialah Process-N, N ialah integer yang meningkat daripada 1
pid The pid (nombor proses) proses semasa
is_alive() Tentukan sama ada proses anak proses masih hidup
exitcode
daemon Bendera daemon proses ialah nilai Boolean.
authkey Kunci pengesahan proses.
sentinel Pemegang berangka kepada objek sistem yang akan sedia apabila proses tamat.
terminate() Tamatkan proses kanak-kanak serta-merta tanpa mengira sama ada tugasan telah selesai
kill() Sama seperti terminate(), tetapi menggunakan isyarat SIGKILL pada Unix.
close() Tutup objek Proses dan lepaskan semua sumber yang berkaitan dengannya

2. 2 gelung while dilaksanakan bersama

# -*- coding:utf-8 -*-from multiprocessing import Processimport timedef run_proc():
    """子进程要执行的代码"""
    while True:
        print("----2----")
        time.sleep(1)if __name__=='__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)

Hasil operasi:
Ringkasan mata pengetahuan pelbagai proses Python
Penjelasan: Apabila mencipta proses anak, hanya satu yang perlu diluluskan dalam Laksanakan fungsi dan parameternya, buat contoh Process dan gunakan kaedah start() untuk memulakan

3 Proses pid

# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport timedef run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()

Hasil berjalan:
Ringkasan mata pengetahuan pelbagai proses Python

4 Hantar parameter kepada fungsi yang ditentukan oleh proses anak

# -*- coding:utf-8 -*-from multiprocessing import Processimport osfrom time import sleepdef run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

Hasil berjalan:
Ringkasan mata pengetahuan pelbagai proses Python

5 tidak dikongsi antara proses

# -*- coding:utf-8 -*-from multiprocessing import Processimport osimport time

nums = [11, 22]def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        time.sleep(1)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))def work2():
    """子进程要执行的代码"""
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()

    p2 = Process(target=work2)
    p2.start()

Hasil operasi:

in process1 pid=11349 ,nums=[11, 22]in process1 pid=11349 ,nums=[11, 22, 0]in process1 pid=11349 ,
nums=[11, 22, 0, 1]in process1 pid=11349 ,nums=[11, 22, 0, 1, 2]in process2 pid=11350 ,nums=[11, 22]

3 Penyegerakan antara proses

Proses kadangkala perlu berkomunikasi sistem pengendalian menyediakan banyak mekanisme untuk mencapai komunikasi antara proses.

1. Baris gilir perihalan sintaks kelas

Nama kaedah Penerangan
q=Queue() Mulakan objek Queue(), jika nilai maksimum yang boleh diterima tidak ditentukan dalam kurungan Bilangan mesej, atau jika nombor itu adalah nilai negatif, ini bermakna tiada had atas pada bilangan mesej yang boleh diterima (sehingga penghujung ingatan)
Queue.qsize() Mengembalikan bilangan mesej yang terkandung dalam baris gilir semasa
Queue .empty() Jika baris gilir Jika kosong, kembalikan Benar, jika tidak Salah
Queue.full() Jika baris gilir penuh, kembalikan True, jika tidak False
Queue.get([block[, timeout]] )
方法名 说明
q=Queue() 初始化Queue()对象,若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头)
Queue.qsize() 返回当前队列包含的消息数量
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.get([block[, timeout]]) 获取队列中的一条消息,然后将其从列队中移除,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常。2、如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常
Queue.get_nowait() 相当Queue.get(False)
Queue.put(item,[block[, timeout]]) 将item消息写入队列,block默认值为True。1、如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常。 2、如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常
Queue.put_nowait(item) 相当Queue.put(item, False)
Dapatkan mesej dalam baris gilir , dan kemudian alih keluarnya daripada baris gilir Nilai lalai blok ialah Benar. 1. Jika blok menggunakan nilai lalai dan tiada masa tamat (dalam saat) ditetapkan, dan baris gilir mesej kosong, program akan disekat (berhenti dalam keadaan bacaan) sehingga mesej dibaca daripada baris gilir mesej ditetapkan , ia akan menunggu beberapa saat tamat masa, dan jika tiada mesej telah dibaca, pengecualian "Barisan.Kosong" akan dilemparkan. 2. Jika nilai blok False dan baris gilir mesej kosong, pengecualian "Queue.Empty" akan dilemparkan serta-merta
Queue.get_nowait() kod > Qualue Queue.get(False)
Queue.put(item,[block[, timeout]]) Tulis mesej item pada baris gilir Nilai lalai blok ialah Benar. 1. Jika blok menggunakan nilai lalai dan tiada tamat masa (dalam saat) ditetapkan, jika tiada ruang untuk menulis dalam baris gilir mesej, program akan disekat (berhenti dalam keadaan menulis) sehingga ruang tersedia dalam baris gilir mesej. Jika tamat masa ditetapkan, ia akan menunggu beberapa saat. Jika tiada ruang, pengecualian "Barisan Penuh" akan dilemparkan. 2. Jika nilai blok adalah Palsu, jika tiada ruang untuk menulis dalam baris gilir mesej, pengecualian "Barisan Penuh" akan dilemparkan serta-merta
Baris Gilir .put_nowait(item ) QualueQueue.put(item, False)

2. Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

#coding=utf-8from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息q.put("消息1") q.put("消息2")print(q.full())  #Falseq.put("消息3")print(q.full()) #True#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常try:
    q.put("消息4",True,2)except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())try:
    q.put_nowait("消息4")except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())#推荐的方式,先判断消息列队是否已满,再写入if not q.full():
    q.put_nowait("消息4")#读取消息时,先判断消息列队是否为空,再读取if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

运行结果:

FalseTrue消息列队已满,现有消息数量:3消息列队已满,现有消息数量:3消息1消息2消息3

3. Queue实例

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queueimport os, time, random# 写数据进程执行的代码:def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())# 读数据进程执行的代码:def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            breakif __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')

运行结果:
Ringkasan mata pengetahuan pelbagai proses Python

四、进程间同步-Lock

锁是为了确保数据一致性。比如读写锁,每个进程给一个变量增加 1,但是如果在一个进程读取但还没有写入的时候,另外的进程也同时读取了,并写入该值,则最后写入的值是错误的,这时候就需要加锁来保持数据一致性。

通过使用Lock来控制一段代码在同一时间只能被一个进程执行。Lock对象的两个方法,acquire()用来获取锁,release()用来释放锁。当一个进程调用acquire()时,如果锁的状态为unlocked,那么会立即修改为locked并返回,这时该进程即获得了锁。如果锁的状态为locked,那么调用acquire()的进程则阻塞。

1. Lock的语法说明

  • lock = multiprocessing.Lock(): 创建一个锁

  • lock.acquire() :获取锁

  • lock.release() :释放锁

  • with lock:自动获取、释放锁 类似于 with open() as f:

2. 程序不加锁时

import multiprocessingimport timedef add(num, value):
    print('add{0}:num={1}'.format(value, num))
    for i in range(0, 2):
        num += value        print('add{0}:num={1}'.format(value, num))
        time.sleep(1)if __name__ == '__main__':
    lock = multiprocessing.Lock()
    num = 0
    p1 = multiprocessing.Process(target=add, args=(num, 1))
    p2 = multiprocessing.Process(target=add, args=(num, 2))
    p1.start()
    p2.start()

运行结果:运得没有顺序,两个进程交替运行

add1:num=0add1:num=1add2:num=0add2:num=2add1:num=2add2:num=4

3. 程序加锁时

import multiprocessingimport timedef add(num, value, lock):
    try:
        lock.acquire()
        print('add{0}:num={1}'.format(value, num))
        for i in range(0, 2):
            num += value            print('add{0}:num={1}'.format(value, num))
            time.sleep(1)
    except Exception as err:
        raise err    finally:
        lock.release()if __name__ == '__main__':
    lock = multiprocessing.Lock()
    num = 0
    p1 = multiprocessing.Process(target=add, args=(num, 1, lock))
    p2 = multiprocessing.Process(target=add, args=(num, 2, lock))
    p1.start()
    p2.start()

运行结果:只有当其中一个进程执行完成后,其它的进程才会去执行,且谁先抢到锁谁先执行

add1:num=0add1:num=1add1:num=2add2:num=0add2:num=2add2:num=4

五、进程池Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

1. Pool类语法说明

语法格式multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])

参数说明

  • processes:工作进程数目,如果 processes 为 None,则使用 os.cpu_count() 返回的值。

  • initializer:如果 initializer 不为 None,则每个工作进程将会在启动时调用 initializer(*initargs)。

  • maxtasksperchild:一个工作进程在它退出或被一个新的工作进程代替之前能完成的任务数量,为了释放未使用的资源。

  • context:用于指定启动的工作进程的上下文。

两种方式向进程池提交任务

  • apply(func[, args[, kwds]]):阻塞方式。

  • apply_async(func[, args[, kwds]]):非阻塞方式。使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表

multiprocessing.Pool常用函数:

方法名 说明
close() 关闭Pool,使其不再接受新的任务
terminate() 不管任务是否完成,立即终止
join() 主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用

2. Pool实例

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

# -*- coding:utf-8 -*-from multiprocessing import Poolimport os, time, randomdef worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))po = Pool(3)  # 定义一个进程池,最大进程数3for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))print("----start----")po.close()  
    # 关闭进程池,关闭后po不再接收新的请求po.join()  
    # 等待po中所有子进程执行完成,必须放在close语句之后print("-----end-----")

运行结果:

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

3. 进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()

而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# -*- coding:utf-8 -*-# 修改import中的Queue为Managerfrom multiprocessing import Manager,Poolimport os,time,randomdef reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "itcast":
        q.put(i)if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果:

(11095) start
writer启动(11097),父进程为(11095)reader启动(11098),父进程为(11095)reader从Queue获取到消息:i
reader从Queue获取到消息:t
reader从Queue获取到消息:c
reader从Queue获取到消息:a
reader从Queue获取到消息:s
reader从Queue获取到消息:t(11095) End

六、进程、线程对比

1. 功能

进程:能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
线程:能够完成多任务,比如 一个QQ中的多个聊天窗口

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位.

  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

2. 区别

  • 一个程序至少有一个进程,一个进程至少有一个线程.
    -线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
    -进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
    Ringkasan mata pengetahuan pelbagai proses Python
  • 线线程不能够独立执行,必须依存在进程中
  • 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人

3. 优缺点

  • 线程:线程执行开销小,但不利于资源的管理和保护
  • 进程:进程执行开销大,但利于资源的管理和保护

推荐学习:python视频教程

Atas ialah kandungan terperinci Ringkasan mata pengetahuan pelbagai proses Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:csdn.net. Jika ada pelanggaran, sila hubungi admin@php.cn Padam