Rumah >pangkalan data >MongoDB >Mari bercakap dengan anda tentang jenis indeks kaya dalam MongoDB
Artikel ini akan membawa anda memahami MongoDB dan memperkenalkan jenis indeks yang kaya dalam MongoDB. Saya harap ia dapat membantu semua orang.
MongoDB
indeks dan MySql
pada dasarnya mempunyai fungsi dan prinsip yang serupa untuk diikuti untuk pengoptimuman MySql
jenis indeks pada asasnya boleh dibezakan sebagai:
Kecuali dalam MongoDB
Selain klasifikasi asas ini, terdapat juga beberapa jenis indeks khas, seperti: indeks tatasusunan |. indeks geospatial |. untuk memasukkan data berikut
for(var i = 0;i < 100000;i++){ db.users.insertOne({ username: "user"+i, age: Math.random() * 100, sex: i % 2, phone: 18468150001+i }); }Indeks kunci tunggal
Gunakan dalam medan koleksi
, buat indeks kunci tunggal, akan secara automatik menamakan indeks ini username
MongoDB
username_1
db.users.createIndex({username:1}) 'username_1',
ialah username
mewakili penggunaan imbasan indeks stage
IXSCAN
db.users.find({username:"user40001"}).explain() { queryPlanner: { winningPlan: { ...... stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... } } rejectedPlans: [] , }, ...... ok: 1 }, nilai umur ialah
, kemudian users
. medan akan mempunyai 100 nilai unik, iaitu asas medan 0-99
ialah 100 dan age
Medan ini hanya akan mempunyai dua nilai age
, iaitu asas medan sex
ialah 2, yang merupakan asas yang agak rendah Dalam kes ini, kecekapan pengindeksan tidak tinggi dan akan menyebabkan kegagalan indeks .0 | 1
sex
Berikut ialah indeks medan
sex
db.users.createIndex({sex:1}) 'sex_1' db.users.find({sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'COLLSCAN', filter: { sex: { '$eq': 1 } }, direction: 'forward' }, rejectedPlans: [] }, ...... ok: 1 }Indeks bersama
untuk mencipta indeks age
sex
db.users.createIndex({age:1,sex:1}) 'age_1_sex_1'
db.users.find({age:23,sex:1}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { age: 1, sex: 1 }, indexName: 'age_1_sex_1', ....... indexBounds: { age: [ '[23, 23]' ], sex: [ '[1, 1]' ] } } }, rejectedPlans: [], }, ...... ok: 1 }Indeks tatasusunan
users
db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","篮球","rap"]}}) ......menunjukkan indeks yang digunakan ialah indeks berbilang nilai Berbanding dengan indeks lain, entri indeks dan volum indeks tatasusunan mesti meningkat secara eksponen Contohnya, purata
tatasusunan isMultiKey: true
setiap dokumen ialah 10, Kemudian bilangan entri dalam indeks tatasusunan
db.users.createIndex({hobby:1}) 'hobby_1' db.users.find({hobby:{$elemMatch:{$eq:"钓鱼"}}}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { hobby: { '$elemMatch': { '$eq': '钓鱼' } } }, inputStage: { stage: 'IXSCAN', keyPattern: { hobby: 1 }, indexName: 'hobby_1', isMultiKey: true, multiKeyPaths: { hobby: [ 'hobby' ] }, ...... indexBounds: { hobby: [ '["钓鱼", "钓鱼"]' ] } } }, rejectedPlans: [] }, ...... ok: 1 }
hobby
Indeks tatasusunan kesatuan size
hobby
Indeks spatial geografi
Tambahkan beberapa maklumat geografi pada koleksiusers
for(var i = 0;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ location:{ type: "Point", coordinates: [100+Math.random() * 4,40+Math.random() * 3] } } }); }indeks geospatial mempunyai banyak elemen termasuk
|
dsb.db.users.createIndex({location:"2dsphere"}) 'location_2dsphere' //查询500米内的人 db.users.find({ location:{ $near:{ $geometry:{type:"Point",coordinates:[102,41.5]}, $maxDistance:500 } } })
type
Indeks TTLPonit(点)
LineString(线)
Polygon(多边形)
Ejaan penuh TTL ialah
MongoDB
将会自动将这些文档删除,这种索引还有以下这些要求:
delete
函数删除,效率并不高首先在我们文档上增减一个时间字段
for(var i = 90000;i < 100000;i++){ db.users.updateOne( {username:"user"+i}, { $set:{ createdDate:new Date() } }); }
创建一个TTL索引并且设定过期时间为60s,待过60s后查询,会发现这些数据已经不存在
db.users.createIndex({createdDate:1},{expireAfterSeconds:60}) 'createdDate_1'
另外还可以用CollMod
命令更改TTL索引的过期时间
db.runCommand({ collMod:"users", index:{ keyPattern:{createdDate:1}, expireAfterSeconds:120 } }) { expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }
条件索引也叫部分索引(partial),只对满足条件的数据进行建立索引.
只对50岁以上的user
进行建立username_1
索引,查看执行计划会发现isPartial
这个字段会变成true
db.users.createIndex({username:1},{partialFilterExpression:{ age:{$gt:50} }}) 'username_1' db.users.find({$and:[{username:"user4"},{age:60}]}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', filter: { age: { '$eq': 60 } }, inputStage: { stage: 'IXSCAN', keyPattern: { username: 1 }, indexName: 'username_1', ...... isPartial: true, ...... } }, rejectedPlans: [] }, ...... ok: 1 }
一般的索引会根据某个字段为整个集合创建一个索引,即使某个文档不存这个字段,那么这个索引会把这个文档的这个字段当作null
建立在索引当中.
稀疏索引不会对文档中不存在的字段建立索引,如果这个字段存在但是为null
时,则会创建索引.
下面给users
集合中的部分数据创建稀疏索引
for(var i = 5000;i < 10000;i++){ if(i < 9000){ db.users.updateOne( {username:"user"+i}, { $set:{email:(120000000+i)+"@qq.email"}} ) }else{ db.users.updateOne( {username:"user"+i}, { $set:{email:null}} ) } }
当不建立索引使用{email:null}
条件进行查询时,我们会发现查出来的文档包含没有email
字段的文档
db.users.find({email:null}) { _id: ObjectId("61bdc01ba59136670f6536fd"), username: 'user0', age: 64.41483801726282, sex: 0, phone: 18468150001, location: { type: 'Point', coordinates: [ 101.42490900320335, 42.2576650823515 ] } } ......
然后对email
这个字段创建一个稀疏索引使用{email:null}
条件进行查询,则发现查询来的文档全部是email
字段存在且为null
的文档.
db.users.createIndex({email:1},{sparse:true}); 'email_1' db.users.find({email:null}).hint({email:1}) { _id: ObjectId("61bdc12ca59136670f655a25"), username: 'user9000', age: 94.18397576757012, sex: 0, phone: 18468159001, hobby: [ '钓鱼', '乒乓球' ], location: { type: 'Point', coordinates: [ 101.25903151863596, 41.38450145025062 ] }, email: null } ......
文本索引将建立索引的文档字段先进行分词再进行检索,但是目前还不支持中文分词.
下面增加两个文本字段,创建一个联合文本索引
db.blog.insertMany([ {title:"hello world",content:"mongodb is the best database"}, {title:"index",content:"efficient data structure"} ]) //创建索引 db.blog.createIndex({title:"text",content:"text"}) 'title_text_content_text' //使用文本索引查询 db.blog.find({$text:{$search:"hello data"}}) { _id: ObjectId("61c092268c4037d17827d977"), title: 'index', content: 'efficient data structure' }, { _id: ObjectId("61c092268c4037d17827d976"), title: 'hello world', content: 'mongodb is the best database' }
唯一索引就是在建立索引地字段上不能出现重复元素,除了单字段唯一索引还有联合唯一索引以及数组唯一索引(即数组之间不能有元素交集 )
//对title字段创建唯一索引 db.blog.createIndex({title:1},{unique:true}) 'title_1' //插入一个已经存在的title值 db.blog.insertOne({title:"hello world",content:"mongodb is the best database"}) MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" } //查看一下执行计划,isUnique为true db.blog.find({"title":"index"}).explain() { queryPlanner: { ...... winningPlan: { stage: 'FETCH', inputStage: { stage: 'IXSCAN', keyPattern: { title: 1 }, indexName: 'title_1', isMultiKey: false, multiKeyPaths: { title: [] }, isUnique: true, ...... } }, rejectedPlans: [] }, ....... ok: 1 }
相关视频教程推荐:《MongoDB教程》
Atas ialah kandungan terperinci Mari bercakap dengan anda tentang jenis indeks kaya dalam MongoDB. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!