Rumah  >  Artikel  >  Apakah keburukan pengecaman muka?

Apakah keburukan pengecaman muka?

青灯夜游
青灯夜游asal
2021-12-06 16:57:1438855semak imbas

Kelemahan pengecaman muka: 1. Kesilapan mungkin berlaku, menjejaskan keputusan penilaian orang; 2. Kebolehpercayaan dan kestabilan maklumat adalah lemah; perubahan tidak mencukupi, dan pengiktirafan tidak begitu tinggi; 4. Perubahan dalaman orang itu sendiri dan perubahan persekitaran luaran akan menjejaskan kestabilan maklumat muka semasa pengumpulan.

Apakah keburukan pengecaman muka?

Persekitaran pengendalian tutorial ini: sistem Windows 7, komputer Dell G3.

Dari perspektif teknikal, wajah adalah satu-satunya maklumat biometrik yang boleh dikumpul tanpa kerjasama aktif pengguna. Proses pengumpulan ciri biometrik yang lain, seperti cap jari, tapak tangan, iris, urat, dan retina, memerlukan kerjasama aktif pengguna Iaitu, jika pengguna enggan mengumpul, maklumat ciri berkualiti tinggi tidak boleh diperolehi. Dari sudut psikologi sosial, pengecaman muka adalah konsisten dengan pengalaman pengecaman visual orang ramai dan mudah diterima oleh pengguna. Sebagai contoh, apabila orang mengumpul cap jari dan iris, mereka bimbang tentang kebocoran privasi, tetapi mereka tidak merasa dicabuli apabila ditangkap oleh ratusan kamera pengawasan di jalanan setiap hari, kerana wajah manusia secara semula jadi terdedah dan dianggap sebagai ciri semula jadi untuk mengenal pasti identiti. Jadi mari kita bincangkan tentang keburukan teknologi pengecaman muka.

Kelemahan teknikal pengecaman muka

Teknologi pengecaman muka juga akan mempunyai ralat, yang akan menjejaskan keputusan penghakiman orang ramai.

Satu kelemahan pengecaman muka ialah kebolehpercayaan dan kestabilan maklumat adalah lemah.

Jumlah maklumat yang terkandung dalam wajah manusia agak kecil berbanding cap jari, iris dan ciri biologi lain, dan perubahannya tidak cukup kompleks. Sebagai contoh, jika cap jari atau iris dua orang pada asasnya sama, ia akan mengambil berpuluh-puluh atau bahkan ratusan bit untuk bertindih sepenuhnya. Tetapi jika ia adalah wajah manusia, ia cukup untuk bertindih sedozen bit. Banyak wajah yang mempunyai persamaan boleh ditemui di seluruh dunia. Oleh itu, pengiktirafan wajah manusia tidak begitu tinggi, dan ia tidak begitu unik.

Selain itu, perubahan dalaman seseorang itu sendiri dan perubahan dalam persekitaran luaran akan menjejaskan kestabilan maklumat wajah semasa pengumpulan. Berbanding dengan teknologi pengecaman muka sebelumnya, teknologi pengecaman muka semasa telah bertambah baik, tetapi aplikasi khusus masih tidak sempurna Dianggarkan secara konservatif bahawa kadar ketepatan teknologi pengecaman muka boleh mencapai 99%.

Kesukaran Teknikal Pengecaman Wajah

1. Masalah Pencahayaan

Perubahan pencahayaan adalah faktor terpenting yang mempengaruhi prestasi pengecaman muka Faktor utama, tahap penyelesaian masalah ini adalah berkaitan dengan kejayaan atau kegagalan proses praktikal pengecaman muka. Disebabkan oleh struktur 3D muka manusia, bayang-bayang yang dipancarkan oleh cahaya akan meningkatkan atau melemahkan ciri muka asal. Terutama pada waktu malam, bayang-bayang muka yang disebabkan oleh cahaya yang tidak mencukupi akan menyebabkan penurunan mendadak dalam kadar pengecaman, menyukarkan sistem untuk memenuhi keperluan praktikal. Pada masa yang sama, teori dan eksperimen juga membuktikan bahawa perbezaan yang disebabkan oleh pencahayaan yang berbeza bagi individu yang sama adalah lebih besar daripada perbezaan antara individu yang berbeza di bawah pencahayaan yang sama. Masalah pencahayaan adalah masalah lama dalam penglihatan mesin, terutamanya dalam pengecaman muka. Penyelesaian untuk menyelesaikan masalah pencahayaan termasuk pengecaman muka imej tiga dimensi dan pengecaman muka pengimejan terma. Walau bagaimanapun, kedua-dua teknologi ini masih jauh dari matang, dan hasil pengiktirafan tidak memuaskan.

2. Masalah postur

Pengecaman muka terutamanya berdasarkan ciri-ciri perwakilan wajah orang Bagaimana untuk mengenal pasti perubahan wajah yang disebabkan oleh postur telah menjadi salah satu kesukaran teknologi ini. Masalah pose melibatkan perubahan muka yang disebabkan oleh putaran kepala mengelilingi tiga paksi dalam sistem koordinat menegak tiga dimensi, di mana putaran kedalaman dalam dua arah berserenjang dengan satah imej akan menyebabkan kehilangan sebahagian maklumat muka. Ini menjadikan masalah postur sebagai masalah teknikal dalam pengecaman muka. Terdapat sedikit kajian mengenai postur Pada masa ini, kebanyakan algoritma pengecaman muka tertumpu terutamanya pada imej muka hadapan dan separa hadapan Apabila imej muka pic atau kiri-kanan teruk, kadar pengecaman algoritma pengecaman juga akan berkurangan merosot.

3. Isu Ekspresi

Perubahan besar dalam ekspresi muka seperti menangis, ketawa, dan marah juga mempengaruhi ketepatan pengecaman muka. Teknologi sedia ada mengendalikan aspek-aspek ini dengan agak baik Sama ada ia membuka mulut atau membuat beberapa ungkapan yang berlebihan, komputer boleh membetulkannya melalui pemodelan tiga dimensi dan kaedah pembetulan postur dan ekspresi.

4. Masalah oklusi

Untuk pengumpulan imej muka dalam keadaan tidak kooperatif, masalah oklusi adalah masalah yang sangat serius. Terutamanya dalam persekitaran pengawasan, subjek yang akan dipantau sering memakai cermin mata, topi dan aksesori lain, yang menjadikan imej muka yang dikumpul mungkin tidak lengkap, yang menjejaskan pengekstrakan dan pengecaman ciri seterusnya, malah menjejaskan algoritma pengesanan muka kegagalan.

5. Umur berubah

Apabila umur berubah, seseorang berubah daripada remaja kepada lelaki muda atau lelaki tua, dan penampilannya mungkin berubah dengan ketara, mengakibatkan penurunan dalam kadar pengecaman. merosot. Untuk kumpulan umur yang berbeza, kadar pengecaman algoritma pengecaman muka juga berbeza. Contoh paling langsung masalah ini ialah pengenalan gambar kad pengenalan Di negara kita, tempoh sah kad pengenalan secara amnya adalah 20 tahun dalam tempoh 20 tahun ini, penampilan setiap orang pasti akan berubah dengan ketara, jadi terdapat juga cabaran besar dalam pengenalan. soalan .

6. Persamaan muka

Tidak banyak beza antara individu yang berbeza Struktur semua wajah manusia adalah serupa, malah struktur dan rupa organ muka juga sangat serupa. Ciri-ciri sedemikian adalah berfaedah untuk menggunakan muka untuk kedudukan, tetapi merugikan untuk menggunakan muka untuk membezakan individu manusia. Faktor manusia seperti solek dan pembedahan plastik bertujuan meniru bintang tertentu menjadikan masalah ini lebih sukar. Lebih-lebih lagi untuk isu kembar, sama ada sistem pengecaman wajah dapat mengenal pasti mereka dengan betul sebenarnya menjadi perdebatan dalam kalangan akademik. Sesetengah pakar percaya bahawa kembar tidak boleh dibezakan dengan teknologi pengecaman muka sama sekali. Ia tidak boleh dibezakan dengan tepat menggunakan teknologi pengecaman muka.

7. Pengecaman dinamik

Dalam kes pengecaman muka yang tidak bekerjasama, imej muka yang kabur akibat pergerakan atau fokus kamera yang salah akan menjejaskan kadar kejayaan pengecaman muka. Kesukaran ini jelas ketara dalam penggunaan pengenalan keselamatan dan pemantauan seperti kereta api bawah tanah, pusat pemeriksaan lebuh raya, pusat pemeriksaan stesen, anti penyeluk saku pasar raya, dan pemeriksaan sempadan.

8. Menghadapi anti-pemalsuan

Kaedah penipuan arus perdana untuk memalsukan imej muka untuk pengecaman ialah membina model tiga dimensi atau cantuman beberapa ekspresi. Dengan peningkatan teknologi anti-pemalsuan muka, pengenalan teknologi pengecaman muka 3D, kamera dan teknologi penglihatan pengkomputeran pintar lain, kadar kejayaan imej muka palsu untuk pengenalan akan dikurangkan dengan banyaknya.

9. Kekurangan sampel

Algoritma pengecaman muka berdasarkan pembelajaran statistik kini merupakan algoritma arus perdana dalam bidang pengecaman muka, tetapi kaedah pembelajaran statistik memerlukan banyak latihan. Memandangkan taburan imej muka dalam ruang berdimensi tinggi adalah taburan manifold yang tidak teratur, sampel yang boleh diperolehi hanya mengambil sampel sebahagian kecil daripada ruang imej muka Bagaimana untuk menyelesaikan masalah pembelajaran statistik di bawah sampel kecil masih perlu dikaji penyelidikan. Di samping itu, pangkalan data imej muka yang sedang menyertai latihan pada asasnya adalah imej warga asing, dan terdapat sangat sedikit pangkalan data imej muka orang Cina dan Asia, yang menjadikan model pengecaman muka latihan lebih sukar.

10. Isu kualiti imej

Imej muka mungkin datang daripada pelbagai sumber, kualiti imej muka yang diperolehi juga berbeza, terutamanya bagi mereka yang mempunyai resolusi rendah untuk melaksanakan pengecaman muka secara berkesan pada imej muka dengan bunyi yang tinggi dan kualiti yang tidak baik (seperti imej muka yang diambil oleh kamera telefon mudah alih, imej yang diambil oleh pemantauan jarak jauh, dsb.) adalah masalah yang memerlukan perhatian. Begitu juga, kajian lanjut diperlukan tentang kesan imej resolusi tinggi pada algoritma pengecaman muka. Sekarang, apabila kami melakukan pengecaman muka, kami biasanya menggunakan imej wajah dengan saiz yang sama dan resolusi yang sangat dekat, jadi masalah kualiti imej pada asasnya boleh diselesaikan Namun, dalam menghadapi masalah yang lebih kompleks dalam realiti, kami perlu terus mengoptimumkan dan memprosesnya.

Risiko keselamatan pengecaman muka

Dalam beberapa tahun kebelakangan ini, teknologi pengecaman muka telah menjadi semakin inovatif dan terdedah kepada penemuan, dan telah digunakan secara meluas dalam pelbagai industri. Projek ini jelas kepada semua, tetapi teknologi semasa masih tidak dapat bersaing dengan perubahan sosial yang pesat dan permintaan pasaran untuk mengimbas dan mengenal pasti orang yang memakai topeng Selepas itu, pengeluar utama segera Kemas kini algoritma, tetapi kali ini juga mengingatkan kita bahawa dalam menghadapi ketidakpastian masa depan, teknologi tidak boleh kekal statik dan memerlukan inovasi dan penemuan berterusan.

Selain itu, bagaimana untuk mengenali wajah dengan lebih baik di bawah cahaya dan sudut yang berbeza? Isu-isu seperti bagaimana untuk menentukan identiti dengan jelas dan tepat masih merupakan titik kesakitan teknikal yang perlu diselesaikan.

Kajian yang dijalankan pada tahun 2012 menunjukkan bahawa algoritma muka yang disediakan oleh vendor Cognitec adalah 5% hingga 10% lebih teruk dalam mengenal pasti orang Afrika Amerika berbanding orang Kaukasia pada tahun 2011, Beberapa penyelidik telah mendapati bahawa model pengecaman muka dibangunkan di China, Jepun dan Korea Selatan menghadapi kesukaran untuk membezakan antara orang Kaukasia dan Asia Timur. Pada Februari tahun ini, penyelidik dari MIT Media Lab menunjukkan bahawa teknologi pengecaman muka daripada Microsoft, IBM dan pengeluar China Megvii mempunyai kadar ralat sehingga 7% dalam mengenal pasti wanita berkulit cerah, dan kadar ralat mengenal pasti berkulit gelap. lelaki.

Terdapat lebih banyak contoh ralat algoritma. Penemuan terbaru mendedahkan bahawa sistem yang digunakan oleh Polis Metropolitan London menghasilkan sehingga 49 padanan palsu setiap kali ia benar-benar digunakan. Pada pendengaran Jawatankuasa Pemantauan Dewan mengenai teknologi pengecaman muka tahun lepas, FBI mengakui bahawa algoritmanya yang digunakan untuk mengenal pasti suspek jenayah mempunyai kadar ralat sehingga 15%. Selain itu, kajian berterusan oleh penyelidik di University of Virginia mendapati bahawa dua koleksi imej penyelidikan yang terkenal, ImSitu dan COCO (dibina oleh Facebook, Microsoft, dan permulaan MightyAI), mempunyai prestasi yang lemah dalam sukan, memasak dan pelbagai lagi. Terdapat kecenderungan jantina yang jelas dalam huraian (contohnya, imej membeli-belah biasanya dikaitkan dengan wanita, manakala imej bimbingan sering dikaitkan dengan lelaki).

Bagaimana untuk mengenali wajah dengan lebih baik di bawah cahaya dan sudut yang berbeza? Isu-isu seperti bagaimana untuk menentukan identiti dengan jelas dan tepat masih merupakan titik kesakitan teknikal yang perlu diselesaikan.

Walau bagaimanapun, walaupun isu berat sebelah ditangani dan sistem pengecaman muka boleh beroperasi dengan cara yang adil dan saksama untuk semua orang, masih terdapat potensi risiko kegagalan. Seperti kebanyakan teknologi kecerdasan buatan yang lain, walaupun faktor berat sebelah dihapuskan sepenuhnya, penyelesaian pengecaman muka biasanya mempunyai tahap ralat tertentu. Semua alat boleh digunakan untuk kebaikan atau kejahatan, dan lebih kuat alat itu sendiri, lebih jelas manfaat atau bahaya yang mungkin dibawanya.

Untuk lebih banyak pengetahuan berkaitan, sila lawati ruangan Soalan Lazim!

Atas ialah kandungan terperinci Apakah keburukan pengecaman muka?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn