Rumah  >  Artikel  >  pangkalan data  >  Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran

Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran

青灯夜游
青灯夜游ke hadapan
2021-09-29 11:43:313818semak imbas

Artikel ini ialah bab praktikal Redis Ia memperkenalkan kaedah menggunakan Redis Bitmap untuk mencapai statistik data besar peringkat bilion. Saya harap ia akan membantu semua orang.

Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran

Dalam senario perniagaan aplikasi mudah alih, kami perlu menyimpan maklumat sedemikian: kunci dikaitkan dengan pengumpulan data. [Cadangan berkaitan: Tutorial video Redis]

Senario biasa adalah seperti berikut:

  • Berikan userId untuk menentukan status log masuk pengguna; >paparan Bilangan daftar masuk dan masa daftar masuk pertama pengguna dalam bulan tertentu
  • Status daftar masuk 200 juta pengguna dalam 7 hari lepas, mengira jumlah pengguna yang mendaftar; secara berterusan dalam masa 7 hari;
  • Biasanya, Bilangan pengguna dan lawatan yang kami hadapi adalah besar, seperti berjuta-juta atau berpuluh-puluh juta pengguna, atau berpuluh-puluh juta malah berbilion-bilion akses maklumat.

Jadi, kita mesti memilih jenis koleksi yang boleh mengira jumlah data yang besar (seperti berbilion-bilion) dengan sangat cekap.

Bagaimana untuk memilih set data yang sesuai, kita mesti terlebih dahulu memahami model statistik yang biasa digunakan dan menggunakan pemahaman data yang munasabah untuk menyelesaikan masalah praktikal.

Empat jenis statistik:

    Statistik keadaan binari;
  • Statistik pengisihan;

  • Statistik kardinaliti.

  • Artikel ini akan menggunakan

    jenis perangkaan keadaan binari
  • sebagai permulaan siri praktikal Artikel akan menggunakan
  • String, Set, Zset, List,. hash

    Jenis data lanjutan selain

    boleh dilaksanakan.
Arahan yang terlibat dalam artikel boleh dijalankan dan dinyahpepijat melalui klien Redis dalam talian, alamat:

try.redis.io/, yang sangat mudah. MesejBitmap

Berkongsi lebih banyak dan memberi lebih banyak, cipta lebih nilai untuk orang lain pada peringkat awal dan jangan mempertimbangkan pulangan dalam jangka panjang, usaha ini akan kembali anda secara eksponen.

Terutama apabila anda mula-mula mula bekerjasama dengan orang lain, jangan risau tentang pulangan jangka pendek Ia lebih kepada menggunakan visi, perspektif dan kebolehan menyelesaikan masalah anda sendiri.

Statistik keadaan binari

Abang Ma, apakah itu statistik keadaan binari?

bermakna nilai elemen dalam koleksi hanya 0 dan 1. Dalam senario daftar masuk dan daftar masuk dan sama ada pengguna log masuk, anda hanya perlu rekod
atau

,

atau
.

Andaikan kita menggunakan pelaksanaan jenis Rentetan Redis dalam senario menentukan sama ada pengguna log masuk (
kunci -> userId, nilai -> 0 bermaksud luar talian, 1 - log masuk

), jika Untuk menyimpan status log masuk 1 juta pengguna, jika ia disimpan dalam bentuk rentetan, 1 juta rentetan perlu disimpan, yang menggunakan terlalu banyak memori. 签到(1)未签到(0)已登录(1)Abang Ma, kenapa jenis String mempunyai overhed memori yang tinggi? 未登陆(0)

Selain merekod data sebenar, jenis String juga memerlukan memori tambahan untuk merekodkan panjang data, penggunaan ruang dan maklumat lain. Apabila data yang disimpan mengandungi rentetan, jenis Rentetan disimpan menggunakan struktur Rentetan Dinamik Mudah (SDS), seperti ditunjukkan di bawah:

len

: 4 bait, menunjukkan panjang buf yang digunakan.

Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaranperuntukan

: 4 bait, menunjukkan panjang sebenar buf yang diperuntukkan, biasanya > len.
  • buf: tatasusunan bait, yang menyimpan data sebenar Redis secara automatik menambah " pada penghujung tatasusunan

    Bitmap 的底层数据结构用的是 String 类型的 SDS 数据结构来保存位数组,Redis 把每个字节数组的 8 个 bit 位利用起来,每个 bit 位 表示一个元素的二值状态(不是 0 就是 1)。

    可以将 Bitmap 看成是一个 bit 为单位的数组,数组的每个单元只能存储 0 或者 1,数组的下标在 Bitmap 中叫做 offset 偏移量。

    为了直观展示,我们可以理解成 buf 数组的每个字节用一行表示,每一行有 8 个 bit 位,8 个格子分别表示这个字节中的 8 个 bit 位,如下图所示:

    Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran

    8 个 bit 组成一个 Byte,所以 Bitmap 会极大地节省存储空间。 这就是 Bitmap 的优势。

    判断用户登陆态

    怎么用 Bitmap 来判断海量用户中某个用户是否在线呢?

    Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。

    只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。 50000 万 用户只需要 6 MB 的空间。

    SETBIT 命令

    SETBIT <key> <offset> <value>

    设置或者清空 key 的 value 在 offset 处的 bit 值(只能是 0 或者 1)。

    GETBIT 命令

    GETBIT <key> <offset>

    获取 key 的 value 在 offset 处的 bit 位的值,当 key 不存在时,返回 0。

    假如我们要判断 ID = 10086 的用户的登陆情况:

    第一步,执行以下指令,表示用户已登录。

    SETBIT login_status 10086 1

    第二步,检查该用户是否登陆,返回值 1 表示已登录。

    GETBIT login_status 10086

    第三步,登出,将 offset 对应的 value 设置成 0。

    SETBIT login_status 10086 0

    用户每个月的签到情况

    在签到统计中,每个用户每天的签到用 1 个 bit 位表示,一年的签到只需要 365 个 bit 位。一个月最多只有 31 天,只需要 31 个 bit 位即可。

    比如统计编号 89757 的用户在 2021 年 5 月份的打卡情况要如何进行?

    key 可以设计成 uid:sign:{userId}:{yyyyMM},月份的每一天的值 - 1 可以作为 offset(因为 offset 从 0 开始,所以 offset = 日期 - 1)。

    第一步,执行下面指令表示记录用户在 2021 年 5 月 16 号打卡。

    SETBIT uid:sign:89757:202105 15 1

    第二步,判断编号 89757 用户在 2021 年 5 月 16 号是否打卡。

    GETBIT uid:sign:89757:202105 15

    第三步,统计该用户在 5 月份的打卡次数,使用 BITCOUNT 指令。该指令用于统计给定的 bit 数组中,值 = 1 的 bit 位的数量。

    BITCOUNT uid:sign:89757:202105

    这样我们就可以实现用户每个月的打卡情况了,是不是很赞。

    如何统计这个月首次打卡时间呢?

    Redis 提供了 BITPOS key bitValue [start] [end]指令,返回数据表示 Bitmap 中第一个值为 bitValue 的 offset 位置。

    在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end 参数指定要检测的范围。

    所以我们可以通过执行以下指令来获取 userID = 89757 在 2021 年 5 月份首次打卡日期:

    BITPOS uid:sign:89757:202105 1

    需要注意的是,我们需要将返回的 value + 1 ,因为 offset 从 0 开始。

    连续签到用户总数

    在记录了一个亿的用户连续 7 天的打卡数据,如何统计出这连续 7 天连续打卡用户总数呢?

    我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。

    key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。

    一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。

    同样的 UserID  offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。

    结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。

    Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 键 = key 的 Bitmap 进行位元操作。

    opration 可以是 andORNOTXOR。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0 。空的 key 也被看作是包含 0 的字符串序列。

    便于理解,如下图所示:

    Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran

    3 个 Bitmap,对应的 bit 位做「与」操作,结果保存到新的 Bitmap 中。

    操作指令表示将 三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中。接着对 destmap 执行 BITCOUNT 统计。

    // 与操作
    BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
    // 统计 bit 位 =  1 的个数
    BITCOUNT destmap

    简单计算下 一个一亿个位的 Bitmap占用的内存开销,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。

    小结

    思路才是最重要,当我们遇到的统计场景只需要统计数据的二值状态,比如用户是否存在、 ip 是否是黑名单、以及签到打卡统计等场景就可以考虑使用 Bitmap。

    只需要一个 bit 位就能表示 0 和 1。在统计海量数据的时候将大大减少内存占用。

    原文地址:https://juejin.cn/post/6999908907791417351

    作者:码哥字节

    更多编程相关知识,请访问:编程视频!!

Atas ialah kandungan terperinci Membawa anda langkah demi langkah untuk menggunakan Redis Bitmap untuk mencapai berbilion-bilion statistik data besar-besaran. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:juejin.cn. Jika ada pelanggaran, sila hubungi admin@php.cn Padam