Rumah >masalah biasa >计算机机器数的三种表示方法是什么
计算机机器数的三种表示方法是原码、反码和补码。将数的真值形式中“+”号用“0”表示,“-”号用“1”表示时,叫做数的原码形式。为了克服原码运算的缺点,采用机器数的反码和补码表示法;对正数来说其反码和原码的形式相同,对负数来说反码为其原码的数值部分各位变反。补码是根据同余的概念引入的,在计算机系统中,数值一律用补码来表示和存储。
本教程操作环境:windows7系统、Dell G3电脑。
计算机机器数的三种表示方法是原码、反码、补码。
机器数介绍
机器数是将符号"数字化"的数,是数字在计算机中的二进制表示形式。机器数有2个特点:一是符号数字化,二是其数的大小受机器字长的限制。
机器数有两个基本特点:
1、数的符号数值化。实用的数据有正数和负数,由于计算机内部的硬件只能表示两种物理状态(用0和1表示),因此实用数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。通常这个符号放在二进制数的最高位,称符号位,以0代表符号“+”,以1代表符号“-”。因为有符号占据一位,数的形式值就不等于真正的数值,带符号位的机器数对应的数值称为机器数的真值。 例如二进制真值数-011011,它的机器数为 1011011。
2、二进制的位数受机器设备的限制。机器内部设备一次能表示的二进制位数叫机器的字长,一台机器的字长是固定的。字长8位叫一个字节(Byte),机器字长一般都是字节的整数倍,如字长8位、16位、32位、64位。
机器数的形式
1、原码
将数的真值形式中“+”号用“0”表示,“-”号用“1”表示时,叫做数的原码形式,简称原码。若字长为n位,原码一般可表示为:
当X为正数时[X]原和X一样,即[X]原 = X。当X为负数时 。由于X本身为负数,所以,实际上是将∣X∣数值部分绝对值前面的符号位上写成“1”即可。
原码表示法比较直观,它的数值部分就是该数的绝对值,而且与真值、十进制数的转换十分方便。但是它的加减法运算较复杂。当两数相加时,机器要首先判断两数的符号是否相同,如果相同则两数相加,若符号不同,则两数相减。在做减法前,还要判断两数绝对值的大小,然后用大数减去小数,最后再确定差的符号,换言之,用这样一种直接的形式进行加运算时,负数的符号位不能与其数值部分一道参加运算,而必须利用单独的线路确定和的符号位。要实现这些操作,电路就很复杂,这显然是不经济实用的。为了减少设备,解决机器内负数的符号位参加运算的问题,总是将减法运算变成加法运算,也就引进了反码和补码这两种机器数。
2、反码
如前所述,为了克服原码运算的缺点,采用机器数的反码和补码表示法。即对正数来说,其反码和原码的形式相同;对负数来说,反码为其原码的数值部分各位变反。
3、补码
补码是根据同余的概念引入的,我们来看一个减法通过加法来实现的例子。假定当前时间为北京时间6点整,有一只手表却是8点整,比北京时间快了2小时,校准的方法有两种,一种是倒拨2小时,一种是正拨10小时。若规定倒拨是做减法,正拨是做加法,那么对手表来讲减2与加10是等价的,也就是说减2可以用加10来实现。这是因为8加10等于18,然而手表最大只能指示12,当大于12时12自然丢失,18减去12就只剩6了。这说明减法在一定条件下,是可以用加法来代替的。这里“12”称为“模”,10称为“-2”对模12的补数。推广到一般则有:
A – B = A + ( – B + M ) = A + ( – B )补
可见,在模为M的条件下,A减去B,可以用A加上-B的补数来实现。这里模(module)可视为计数器的容量,对上述手表的例子,模为12。在计算机中其部件都有固定的位数,若位数为n,则计数值为 ,亦即计数器容量为 ,因此计算机中的补码是以“ ”为模,其定义如下:
简言之,对正数来说,其补码和原码的形式相同;而从(3)式和(4)式可以看出,对于负数,补码为其反码的末位加1。
总之,正数的原码、反码和补码是完全相同的;负数的原码、反码和补码其形式各不相同。另外,特别要注意的是,对于负数的反码和补码(即符号位为1的数),其符号位后边的几位数表示的并不是此数的数值。如果要想知道此数的大小,一定要求其反码或补码才行。
推荐:《编程视频》
Atas ialah kandungan terperinci 计算机机器数的三种表示方法是什么. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!