Rumah >masalah biasa >数据标准化处理方法
什么是数据标准化(Normalization)
将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。 (推荐学习:web前端视频教程)
有哪些常用方法呢?
方法一:规范化方法
也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。
方法二:正规化方法
这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。
z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
spss默认的标准化方法就是z-score标准化。
用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。
步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。
方法三:归一化方法
Atas ialah kandungan terperinci 数据标准化处理方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!