Rumah  >  Artikel  >  BP神经网络算法

BP神经网络算法

(*-*)浩
(*-*)浩asal
2019-10-24 14:10:079925semak imbas

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP神经网络算法

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。  (推荐学习:web前端视频教程

BP神经网络算法是在BP神经网络现有算法的基础上提出的,是通过任意选定一组权值,将给定的目标输出直接作为线性方程的代数和来建立线性方程组,解得待求权,不存在传统方法的局部极小及收敛速度慢的问题,且更易理解。

BP算法

人工神经网络(artificial neural networks, ANN)系统是20世纪40年代后出现的,它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点,在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其误差反向传播算法(Error Back-propagation Training,简称BP网络)可以逼近任意连续函数,具有很强的非线性映射能力,而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,所以它在许多应用领域中起到重要作用。

为了解决BP神经网络收敛速度慢、不能保证收敛到全局最点,网络的中间层及它的单元数选取无理论指导及网络学习和记忆的不稳定性等缺陷,提出了许多改进算法。

Atas ialah kandungan terperinci BP神经网络算法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn