python求解方程组的三种方法:
相关推荐:《python视频》
Numpy求解方程组
x + 2y = 3 4x + 5y = 6
当然我们可以手动写出解析解,然后写一个函数来求解,这实际上只是用 Python 来单纯做“数值计算”. 但实际上,numpy.linalg.solve 可以直接求解线性方程组.
一般地,我们设解线性方程组形如 Ax=b,其中 A 是系数矩阵,b 是一维(n 维也可以,这个下面会提到),x 是未知变量. 再拿上面地最简单的二元一次方程组为例,我们用 numpy.linalg.solve 可以这样写:
In [1]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.mat('3,6').T # 构造转置矩阵 b (这里必须为列向量) ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[1]: [[-1.] [ 2.]]
那么前面提到的“ n 维”情形是什么呢?实际上就是同时求解多组形式相同的二元一次方程组,例如我们想同时求解这样两组:
x + 2y = 3 4x + 5y = 6
和
x + 2y = 7 4x + 5y = 8
就可以这样写:
In [2]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.array([[3,6], [7,8]]).T # 构造转置矩阵 b (这里必须为列向量), ...: 注意这里用的是 array ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[2]: [[-1. -6.33333333] [ 2. 6.66666667]]
SciPy 求解非线性方程组
一般来说,我们只需要用到 func 和 x0 就够了. func 是自己构造的函数,也就是需要求解的方程组的左端(右端为 0),而 x0 则是给定的初值.
我们来看一个具体的例子,求解:
x + 2y + 3z - 6 = 0 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18 = 0 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 = 0
就可以这么写:
In [3]: from scipy.optimize import fsolve ...: ...: def func(i): ...: x, y, z = i[0], i[1], i[2] ...: return [ ...: x + 2 * y + 3 * z - 6, ...: 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18, ...: 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 ...: ] ...: ...: r = fsolve(func,[0, 0, 0]) ...: print r ...: Out[3]: [ 1.00000001 0.99999998 1.00000001]
当然,SciPy 也可以用来求解线性方程组,这是因为 scipy.optimize.fsolve 本质上是最小二乘法来逼近真实结果.
SymPy 求解方程组
例如求解一个:
x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0
直接就是:
In [4]: from sympy import * ...: x = symbols('x') ...: solve(x + 2 * (x ** 2) + 3 * (x ** 3) - 6, x) Out[4]: [1, -5/6 - sqrt(47)*I/6, -5/6 + sqrt(47)*I/6]
Atas ialah kandungan terperinci python如何解方程的三种方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

Kesan homogenitas tatasusunan pada prestasi adalah dwi: 1) homogenitas membolehkan pengkompil untuk mengoptimumkan akses memori dan meningkatkan prestasi; 2) tetapi mengehadkan kepelbagaian jenis, yang boleh menyebabkan ketidakcekapan. Singkatnya, memilih struktur data yang betul adalah penting.

ToCraftExecutablePythonscripts, ikutiTheseBestPractics: 1) addAshebangline (#!/Usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3)

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular
