本篇文章给大家带来的内容是关于Pandas读写CSV文件的方法介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
读csv:使用pandas读取
import pandas as pd import csv if name == '__main__':
# header=0——表示csv文件的第一行默认为dataframe数据的行名称, # index_col=0——表示使用第0列作为dataframe的行索引, # squeeze=True——表示如果文件只包含一列,则返回一个序列。 file_dataframe = pd.read_csv('../datasets/data_new_2/csv_file_name.csv', header=0, index_col=0, squeeze=True) # 结果:
# 当参数index_col=False 时,自动生成行索引0到n
# csv数据:
data_1 = [] # 读取行索引一样的数据,保存为list try: # 行索引为i的数据有多行,列为'pre_star' data_1.extend(file_dataframe .loc[i]['pre_star'].values.astype(float)) except AttributeError: # 行索引为i的数据只有单行, data_1.extend([file_dataframe .loc[i]['pre_star']]) # 多行结果
# 行索引为i的数据只有一行时,不能对file_dataframe .loc[i]['pre_star']使用.values,否则会报错:
写csv
使用csv写
stu1 = [lid, k, pre_count_data[k]] # 打开文件,写模式为追加'a' out = open('../results/write_file.csv', 'a', newline='') # 设定写入模式 csv_write = csv.writer(out, dialect='excel') # 写入具体内容 csv_write.writerow(stu1)
本篇文章到这里就已经全部结束了,更多其他精彩内容可以关注PHP中文网的python视频教程栏目!
Atas ialah kandungan terperinci Pandas读写CSV文件的方法介绍(附代码). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PythonArraysSupportVariousoperations: 1) SlicingExtractsSubsets, 2) Menambah/ExtendingAddSelements, 3) InsertingPlaceSelementSatSatSatSpecifics, 4) RemovingDeleteselements, 5) Sorting/ReversingChangesOrder,

NumpyarraysareessentialforapplicationRequiringeficientnumericalcomputationsanddatamanipulation.theyarecrucialindaSascience, machinelearning, fizik, kejuruteraan, danfinanceduetotheirabilitytOHandlelarge-Scaledataefisien.Forexample, infinancialanal

UseanArray.arrayoveralistinpythonwhendealingwithhomogeneousdata, criticalcode prestasi, orinterfacingwithccode.1) homogeneousdata: arrayssavemememorywithtypedelements.2)

Tidak, notalllistoperationsaresuportedByArrays, andviceversa.1) arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing, whyimpactsperformance.2) listsdonotguaranteeconstantTimeComplexityFordirectacesscesscesscesscesscesscesscesscesscesessd.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini
