python处理excel数据的方法:1、使用xlrd来处理;2、使用【xlutils+xlrd】来处理;3、使用xlwt来处理;4、使用pyExcelerator来处理;5、使用Pandas库来处理。
这里有一张excel数据表,下面我们通过示例来看看xlrd、xlwt、xluntils、pyExcelerator和Pandas是如何处理excel文件数据的。【视频教程推荐:python教程】
python处理excel数据的方法:
方法一:使用xlrd来处理excel数据
示例1:python读取excel文件特定数据
import xlrd data = xlrd.open_workbook('test.xls') # 打开xls文件 table = data.sheets()[0] # 打开第一张表 nrows = table.nrows # 获取表的行数 # 循环逐行输出 for i in range(nrows): if i == 0: # 跳过第一行 continue print table.row_values(i)[:13] # 取前十三列数据
示例2:python读取excel文件所有数据
import xlrd #打开一个xls文件 workbook = xlrd.open_workbook('test.xls') #抓取所有sheet页的名称 worksheets = workbook.sheet_names() print('worksheets is %s' %worksheets) #定位到sheet1 worksheet1 = workbook.sheet_by_name(u'Sheet1') """ #通过索引顺序获取 worksheet1 = workbook.sheets()[0] #或 worksheet1 = workbook.sheet_by_index(0) """ """ #遍历所有sheet对象 for worksheet_name in worksheets: worksheet = workbook.sheet_by_name(worksheet_name) """ #遍历sheet1中所有行row num_rows = worksheet1.nrows for curr_row in range(num_rows): row = worksheet1.row_values(curr_row) print('row%s is %s' %(curr_row,row)) #遍历sheet1中所有列col num_cols = worksheet1.ncols for curr_col in range(num_cols): col = worksheet1.col_values(curr_col) print('col%s is %s' %(curr_col,col)) #遍历sheet1中所有单元格cell for rown in range(num_rows): for coln in range(num_cols): cell = worksheet1.cell_value(rown,coln) print cell
方法二:使用xlutils+xlrd来处理excel数据
示例:向excel文件中写入数据
import xlrd import xlutils.copy #打开一个xls文件 rb = xlrd.open_workbook('test.xls') wb = xlutils.copy.copy(rb) #获取sheet对象,通过sheet_by_index()获取的sheet对象没有write()方法 ws = wb.get_sheet(0) #写入数据 ws.write(1, 1, 'changed!') #添加sheet页 wb.add_sheet('sheetnnn2',cell_overwrite_ok=True) #利用保存时同名覆盖达到修改excel文件的目的,注意未被修改的内容保持不变 wb.save('test.xls')
方法三:使用xlwt来处理excel数据
示例1:新建excel文件并写入数据
import xlwt #创建workbook和sheet对象 workbook = xlwt.Workbook() #注意Workbook的开头W要大写 sheet1 = workbook.add_sheet('sheet1',cell_overwrite_ok=True) sheet2 = workbook.add_sheet('sheet2',cell_overwrite_ok=True) #向sheet页中写入数据 sheet1.write(0,0,'this should overwrite1') sheet1.write(0,1,'aaaaaaaaaaaa') sheet2.write(0,0,'this should overwrite2') sheet2.write(1,2,'bbbbbbbbbbbbb') #保存该excel文件,有同名文件时直接覆盖 workbook.save('test.xls') print '创建excel文件完成!'
方法四:使用pyExcelerator来处理excel数据
示例1:读excel文件中的数据
import pyExcelerator #parse_xls返回一个列表,每项都是一个sheet页的数据。 #每项是一个二元组(表名,单元格数据)。其中单元格数据为一个字典,键值就是单元格的索引(i,j)。如果某个单元格无数据,那么就不存在这个值 sheets = pyExcelerator.parse_xls('test.xls') print sheets
示例2:新建excel文件并写入数据
import pyExcelerator #创建workbook和sheet对象 wb = pyExcelerator.Workbook() ws = wb.add_sheet(u'第一页') #设置样式 myfont = pyExcelerator.Font() myfont.name = u'Times New Roman' myfont.bold = True mystyle = pyExcelerator.XFStyle() mystyle.font = myfont #写入数据,使用样式 ws.write(0,0,u'ni hao 帕索!',mystyle) #保存该excel文件,有同名文件时直接覆盖 wb.save('E:\\Code\\Python\\mini.xls') print '创建excel文件完成!'
方法五:使用Pandas库来处理excel数据
示例1:读取excel数据
#导入pandas模块 import pandas as pd #直接默认读取到这个Excel的第一个表单 sheet = pd.read_excel('test.xls') #默认读取前5行数据 data=sheet.head() print("获取到所有的值:\n{0}".format(data))#格式化输出 #也可以通过指定表单名来读取数据 sheet2=pd.read_excel('test.xlsx',sheet_name='userRegister') data2=sheet2.head()#默认读取前5行数据 print("获取到所有的值:\n{0}".format(data2))#格式化输出
示例2:操作Excel中的行列
#导入pandas模块 import pandas as pd sheet=pd.read_excel('webservice_testcase.xlsx')#这个会直接默认读取到这个Excel的第一个表单 #读取制定的某一行数据: data=sheet.ix[0].values #0表示第一行 这里读取数据并不包含表头 print("读取指定行的数据:\n{0}".format(data)) #读取指定的多行: data2=sheet.ix[[0,1]].values print("读取指定行的数据:\n{0}".format(data2)) #读取指定行列的数据: data3=sheet.ix[0,1]#读取第一行第二列的值 print("读取指定行的数据:\n{0}".format(data3)) #读取指定的多行多列的值: data4=sheet.ix[[1,2],['姓名','电话']].values #读取第二行第三行的姓名以及电话列的值,这里需要嵌套列表 print("读取指定行的数据:\n{0}".format(data4)) #读取所有行指定的列的值: data5=sheet.ix[:,['姓名','电话']].values #姓名以及电话列的值 print("读取指定行的数据:\n{0}".format(data5)) #获取行号输出: print("输出行号列表",sheet.index.values) #获取列名输出: print("输出列标题",sheet.columns.values)
以上就是本篇文章的全部内容,希望能对大家的学习有所帮助。更多精彩内容大家可以关注php中文网相关教程栏目!!!
Atas ialah kandungan terperinci python如何处理excel数据. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)