cari
Rumahpembangunan bahagian belakangTutorial Pythonpython如何实现优先级队列(附代码)

本篇文章给大家带来的内容是关于python如何实现优先级队列(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

1、需求

我们想要实现一个队列,它能够以给定的优先级来对元素排序,且每次pop操作时都会返回优先级最高的那个元素

2、解决方案

利用heapq模块实现

代码:

import heapq

#利用heapq实现一个简答的优先级队列
class PriorityQueue:
    def __init__(self):
        self._queue=[]
        self._index=0
    def push(self,item,priority):
        heapq.heappush(self._queue,(-priority,self._index,item))
        self._index+=1
    def pop(self):
        return heapq.heappop(self._queue)[-1]

class Item:
    def __init__(self,name):
        self.name=name

    def __repr__(self):
        return 'Item({!r})'.format(self.name)

if __name__ == '__main__':
    q=PriorityQueue()
    q.push(Item('foo'),1)
    q.push(Item('bar'),5)
    q.push(Item('spam'),4)
    q.push(Item('grok'),1)

    print(q.pop())
    print(q.pop())
    #具有相同优先级的两个元素,返回的顺序同它们插入到队列时的顺序相同
    print(q.pop())
    print(q.pop())

运行结果:

Item('bar')
Item('spam')
Item('foo')
Item('grok')
上面的代码核心在于heapq模块的使用。函数heapq.heapqpush()以及heapq.heapqpop()分别实现将元素从列表_queue中插入和移除,且保证列表中第一个元素的优先级最低。heappop()方法总是返回【最小】的元素,因此这就是让队列能弹出正确元素的关键。此外,由于push和pop操作的复杂度都是O(logN),其中N代表堆中元素的数量,因此就算N的值很大,这些操作的效率也非常高。

上面代码中,队列以元组(-priority ,index,item)的形式组成。把priority取负值是为了让队列能够按照元素的优先级从高到底的顺序排列。

变量index的作用是为了将具有相同优先级的元素以适当的顺序排列。通过维护一个不断递增的索引,元素将以它们如队列时的顺序来排列。为了说明index的作用,看下面实例:

代码:

class Item:
    def __init__(self,name):
        self.name=name

    def __repr__(self):
        return 'Item({!r})'.format(self.name)

if __name__ == '__main__':
    a=(1,Item('foo'))
    b=(5,Item('bar'))
    #下面一句打印True
    print(a<b)


    c=(1,Item('grok'))
    #下面一句会报错:TypeError: '<' not supported between instances of 'Item' and 'Item'
    print(c<a)


    d=(1,0,Item('foo'))
    e=(5,1,Item('bar'))
    f=(1,2,Item('grok'))
    #下面一句打印True
    print(d<e)
    #下面一句打印True
    print(d<f)

Atas ialah kandungan terperinci python如何实现优先级队列(附代码). Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:segmentfault思否. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dalam Tindakan: Contoh dunia nyataPython dalam Tindakan: Contoh dunia nyataApr 18, 2025 am 12:18 AM

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Penggunaan Utama Python: Gambaran Keseluruhan KomprehensifPenggunaan Utama Python: Gambaran Keseluruhan KomprehensifApr 18, 2025 am 12:18 AM

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna