Rumah  >  Artikel  >  Java  >  java8下spark-streaming结合kafka编程(spark 2.0 & kafka 0.10

java8下spark-streaming结合kafka编程(spark 2.0 & kafka 0.10

无忌哥哥
无忌哥哥asal
2018-07-23 09:29:163116semak imbas

前面有说道spark-streaming的简单demo,也有说到kafka成功跑通的例子,这里就结合二者,也是常用的使用之一。

1.相关组件版本 
首先确认版本,因为跟之前的版本有些不一样,所以才有必要记录下,另外仍然没有使用scala,使用java8,spark 2.0.0,kafka 0.10。

2.引入maven包 
网上找了一些结合的例子,但是跟我当前版本不一样,所以根本就成功不了,所以探究了下,列出引入包。

<dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
      <version>2.0.0</version>
</dependency>

网上能找到的不带kafka版本号的包最新是1.6.3,我试过,已经无法在spark2下成功运行了,所以找到的是对应kafka0.10的版本,注意spark2.0的scala版本已经是2.11,所以包括之前必须后面跟2.11,表示scala版本。

3.SparkSteamingKafka类 
需要注意的是引入的包路径是org.apache.spark.streaming.kafka010.xxx,所以这里把import也放进来了。其他直接看注释。

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.TopicPartition;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;

import scala.Tuple2;

public class SparkSteamingKafka {
    public static void main(String[] args) throws InterruptedException {
        String brokers = "master2:6667";
        String topics = "topic1";
        SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("streaming word count");
        JavaSparkContext sc = new JavaSparkContext(conf);
        sc.setLogLevel("WARN");
        JavaStreamingContext ssc = new JavaStreamingContext(sc, Durations.seconds(1));

        Collection<String> topicsSet = new HashSet<>(Arrays.asList(topics.split(",")));
        //kafka相关参数,必要!缺了会报错
        Map<String, Object> kafkaParams = new HashMap<>();
        kafkaParams.put("metadata.broker.list", brokers) ;
        kafkaParams.put("bootstrap.servers", brokers);
        kafkaParams.put("group.id", "group1");
        kafkaParams.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        //Topic分区
        Map<TopicPartition, Long> offsets = new HashMap<>();
        offsets.put(new TopicPartition("topic1", 0), 2L); 
        //通过KafkaUtils.createDirectStream(...)获得kafka数据,kafka相关参数由kafkaParams指定
        JavaInputDStream<ConsumerRecord<Object,Object>> lines = KafkaUtils.createDirectStream(
                ssc,
                LocationStrategies.PreferConsistent(),
                ConsumerStrategies.Subscribe(topicsSet, kafkaParams, offsets)
            );
        //这里就跟之前的demo一样了,只是需要注意这边的lines里的参数本身是个ConsumerRecord对象
        JavaPairDStream<String, Integer> counts = 
                lines.flatMap(x -> Arrays.asList(x.value().toString().split(" ")).iterator())
                .mapToPair(x -> new Tuple2<String, Integer>(x, 1))
                .reduceByKey((x, y) -> x + y);  
        counts.print();
//  可以打印所有信息,看下ConsumerRecord的结构
//      lines.foreachRDD(rdd -> {
//          rdd.foreach(x -> {
//            System.out.println(x);
//          });
//        });
        ssc.start();
        ssc.awaitTermination();
        ssc.close();
    }
}

4.运行测试 
这里使用上一篇kafka初探里写的producer类,put数据到kafka服务端,我这是master2节点上部署的kafka,本地测试跑spark2。

UserKafkaProducer producerThread = new UserKafkaProducer(KafkaProperties.topic);
producerThread.start();

再运行3里的SparkSteamingKafka类,可以看到已经成功。 

1.png

2.png

Atas ialah kandungan terperinci java8下spark-streaming结合kafka编程(spark 2.0 & kafka 0.10. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn