这次给大家带来PHP实现多元线性回归模拟曲线算法步骤详解,PHP实现多元线性回归模拟曲线算法的注意事项有哪些,下面就是实战案例,一起来看一下。
多元线性回归模型: y = b1x1 + b2x2 + b3x3 +...... +bnxn;
我们根据一组数据: 类似 arr_x = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]; arr_y = [5, 10, 15]; 我们最后要求出的是一个数组,包含了从b1 到bn;
方法:利用最小二乘法
公式:我们只用公式的前半部分,也就是用矩阵来计算
式中的X就是arr_x,二维数组我们可以把它看成是一个矩阵,式中的y就是arr_y,也把它看成一个矩阵(5, 10, 15) ,不过应该是竖着写的。
然后可以根据公式我们会发现要用到矩阵的相乘,转置,求逆;所以下面的代码一一给出:
public function get_complement($data, $i, $j) { /* x和y为矩阵data的行数和列数 */ $x = count($data); $y = count($data[0]); /* data2为所求剩余矩阵 */ $data2 =[]; for ($k = 0; $k < $x -1; $k++) { if ($k < $i) { for ($kk = 0; $kk < $y -1; $kk++) { if ($kk < $j) { $data2[$k][$kk] = $data[$k][$kk]; } else { $data2[$k][$kk] = $data[$k][$kk +1]; } } } else { for ($kk = 0; $kk < $y -1; $kk++) { if ($kk < $j) { $data2[$k][$kk] = $data[$k +1][$kk]; } else { $data2[$k][$kk] = $data[$k +1][$kk +1]; } } } } return $data2; } /* 计算矩阵行列式 */ public function cal_det($data) { $ans = 0; if (count($data[0]) === 2) { $ans = $data[0][0] * $data[1][1] - $data[0][1] * $data[1][0]; } else { for ($i = 0; $i < count($data[0]); $i++) { $data_temp = $this->get_complement($data, 0, $i); if ($i % 2 === 0) { $ans = $ans + $data[0][$i] * ($this->cal_det($data_temp)); } else { $ans = $ans - $data[0][$i] * ($this->cal_det($data_temp)); } } } return $ans; } /*计算矩阵的伴随矩阵*/ public function ajoint($data) { $m = count($data); $n = count($data[0]); $data2 =[]; for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { if (($i + $j) % 2 === 0) { $data2[$i][$j] = $this->cal_det($this->get_complement($data, $i, $j)); } else { $data2[$i][$j] = - $this->cal_det($this->get_complement($data, $i, $j)); } } } return $this->trans($data2); } /*转置矩阵*/ public function trans($data) { $i = count($data); $j = count($data[0]); $data2 =[]; for ($k2 = 0; $k2 < $j; $k2++) { for ($k1 = 0; $k1 < $i; $k1++) { $data2[$k2][$k1] = $data[$k1][$k2]; } } /*将矩阵转置便可得到伴随矩阵*/ return $data2; } /*求矩阵的逆,输入参数为原矩阵*/ public function inv($data) { $m = count($data); $n = count($data[0]); $data2 =[]; $det_val = $this->cal_det($data); $data2 = $this->ajoint($data); for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { $data2[$i][$j] = $data2[$i][$j] / $det_val; } } return $data2; } /*求两矩阵的乘积*/ public function getProduct($data1, $data2) { /*$data1 为左乘矩阵*/ $m1 = count($data1); $n1 = count($data1[0]); $m2 = count($data2); $n2 = count($data2[0]); $data_new =[]; if ($n1 !== $m2) { return false; } else { for ($i = 0; $i <= $m1 -1; $i++) { for ($k = 0; $k <= $n2 -1; $k++) { $data_new[$i][$k] = 0; for ($j = 0; $j <= $n1 -1; $j++) { $data_new[$i][$k] += $data1[$i][$j] * $data2[$j][$k]; } } } } return $data_new; } /*多元线性方程*/ public function getParams($arr_x, $arr_y) { $final =[]; $arr_x_t = $this->trans($arr_x); $result = $this->getProduct($this->getProduct($this->inv($this->getProduct($arr_x_t, $arr_x)), $arr_x_t), $arr_y); foreach ($result as $key => $val) { foreach ($val as $_k => $_v) { $final[] = $_v; } } return $final; }
最后的getParams()
方法就是最后求b参数数组的方法,传入一个二维数组arr_x, 和一个一维数组arr_y就可以了。
相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
推荐阅读:
Atas ialah kandungan terperinci PHP实现多元线性回归模拟曲线算法步骤详解. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

PHP tetap penting dalam proses pemodenan kerana ia menyokong sejumlah besar laman web dan aplikasi dan menyesuaikan diri dengan keperluan pembangunan melalui rangka kerja. 1.Php7 meningkatkan prestasi dan memperkenalkan ciri -ciri baru. 2. Rangka kerja moden seperti Laravel, Symfony dan CodeIgniter memudahkan pembangunan dan meningkatkan kualiti kod. 3. Pengoptimuman prestasi dan amalan terbaik terus meningkatkan kecekapan aplikasi.

Phphassignificantelympactedwebdevelopmentandextendsbeyondit.1) itpowersmajorplatformslikeworderpressandexcelsindatabaseIntions.2) php'SadaptabilityAldoStoScaleforlargeapplicationFrameworksLikelara.3)

Jenis PHP meminta untuk meningkatkan kualiti kod dan kebolehbacaan. 1) Petua Jenis Skalar: Oleh kerana Php7.0, jenis data asas dibenarkan untuk ditentukan dalam parameter fungsi, seperti INT, Float, dan lain -lain. 2) Return Type Prompt: Pastikan konsistensi jenis nilai pulangan fungsi. 3) Jenis Kesatuan Prompt: Oleh kerana Php8.0, pelbagai jenis dibenarkan untuk ditentukan dalam parameter fungsi atau nilai pulangan. 4) Prompt jenis yang boleh dibatalkan: membolehkan untuk memasukkan nilai null dan mengendalikan fungsi yang boleh mengembalikan nilai null.

Dalam PHP, gunakan kata kunci klon untuk membuat salinan objek dan menyesuaikan tingkah laku pengklonan melalui kaedah Magic \ _ _ _. 1. Gunakan kata kunci klon untuk membuat salinan cetek, mengkloning sifat objek tetapi bukan sifat objek. 2. Kaedah klon \ _ \ _ boleh menyalin objek bersarang untuk mengelakkan masalah menyalin cetek. 3. Beri perhatian untuk mengelakkan rujukan pekeliling dan masalah prestasi dalam pengklonan, dan mengoptimumkan operasi pengklonan untuk meningkatkan kecekapan.

PHP sesuai untuk pembangunan web dan sistem pengurusan kandungan, dan Python sesuai untuk sains data, pembelajaran mesin dan skrip automasi. 1.PHP berfungsi dengan baik dalam membina laman web dan aplikasi yang cepat dan berskala dan biasanya digunakan dalam CMS seperti WordPress. 2. Python telah melakukan yang luar biasa dalam bidang sains data dan pembelajaran mesin, dengan perpustakaan yang kaya seperti numpy dan tensorflow.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Dreamweaver CS6
Alat pembangunan web visual

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.