下面为大家分享一篇Python在groupby分组后提取指定位置记录方法,具有很好的参考价值,希望对大家有所帮助。一起过来看看吧
在进行数据分析、数据建模时,我们首先要做的就是对数据进行处理,提取我们需要的信息。下面为大家介绍一些groupby的用法,以便能够更加方便地进行数据处理。
我们往往在使用groupby进行信息提取时,往往是求分组后样本的一些统计量(max、min,var等)。如果现在我们希望取一下分组后样本的第二条记录,倒数第三条记录,这个该如何操作呢?我们可以通过first、last来提取分组后第一条和最后一条样本。但如果我们要取指定位置的样本,就没有现成的函数。需要我们自己去写了。下面我就为大家介绍如何实现上面的功能。
1)数据介绍
action表共有3列:userid、actionType和actionTime,分别代表用户id,用户行为类型和行为发生时间。具体格式如下图所示:
2)分组操作
a = action.groupby('userid') b = action.groupby('userid')['actionTime'] type(a) type(b)
分组后我们可以看到a和b的数据类型是DataFrameGroupBy和SeriesGroupBy
3)取数操作
①不同用户第二次/倒数第二次操作时间
action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan) action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
②不同用户某种行为第二次/倒数第二次操作时间
action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan) action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
PS:因为有些用户可能只有一条记录,直接取可能会出错,所以我用if先做判断。
这样我们就可以提取分组后数据任意位置的样本了。
相关推荐:
Atas ialah kandungan terperinci Python在groupby分组后提取指定位置记录方法. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Dreamweaver CS6
Alat pembangunan web visual

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma