这篇文章主要介绍了Python cookbook(数据结构与算法)将多个映射合并为单个映射的方法,结合实例形式分析了Python字典映射合并操作相关实现技巧,需要的朋友可以参考下
本文实例讲述了Python将多个映射合并为单个映射的方法。分享给大家供大家参考,具体如下:
问题:在逻辑上将多个字典或映射合并为一个单独的映射结构,以此执行某些特定的操作,比如查找值或者检查键是否存在
解决方案:利用collections
模块中的ChainMap
类
ChainMap
可接受多个映射然后在逻辑上使它们表现为一个单独的映射结构。这些映射在字面上并不会合并在一起。相反,ChainMap
只是简单地维护一个记录底层映射关系的列表,然后重定义常见的字典操作来扫描这个列表。
# example.py # # Example of combining dicts into a chainmap a = {'x': 1, 'z': 3 } b = {'y': 2, 'z': 4 } # (a) Simple example of combining from collections import ChainMap c = ChainMap(a,b) #如果有重复的键,那么会采用第一个映射中所对应的值。 print(c['x']) # Outputs 1 (from a) print(c['y']) # Outputs 2 (from b) print(c['z']) # Outputs 3 (from a) # Output some common values print('len(c):', len(c)) print('c.keys():', list(c.keys())) print('c.values():', list(c.values())) # Modify some values c['z'] = 10 c['w'] = 40 print("a:", a) del c['x'] print("a:", a) # Example of stacking mappings (like scopes) values = ChainMap() values['x'] = 1 # Add a new mapping values = values.new_child() values['x'] = 2 # Add a new mapping values = values.new_child() values['x'] = 3 print(values) print(values['x']) # Discard last mapping values = values.parents print(values) print(values['x']) # Discard last mapping values = values.parents print(values) print(values['x'])
>>> ================================ RESTART ================================ >>> 1 2 3 len(c): 3 c.keys(): ['y', 'x', 'z'] c.values(): [2, 1, 3] a: {'x': 1, 'z': 10, 'w': 40} a: {'z': 10, 'w': 40} ChainMap({'x': 3}, {'x': 2}, {'x': 1}) 3 ChainMap({'x': 2}, {'x': 1}) 2 ChainMap({'x': 1}) 1 >>>
另外ChainMap操作的是原始字典,可以避免一些令人不悦的行为,例如其中任何一个原始字典的修改无法反应到合并后的字典中。
>>> a={'x':1,'z':3} >>> b={'y':2,'z':4} >>> merged=ChainMap(a,b) >>> merged ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4}) >>> merged['x'] 1 >>> a['x']=55 >>> merged['x'] 55 >>> merged ChainMap({'x': 55, 'z': 3}, {'y': 2, 'z': 4}) >>>
(代码摘自《Python Cookbook》)
相关推荐:
Python cookbook(字符串与文本)针对任意多的分隔符拆分字符串操作
Atas ialah kandungan terperinci Python cookbook(数据结构与算法)将多个映射合并为单个映射. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa