这篇文章主要介绍了Python基于递归算法实现的汉诺塔与Fibonacci数列,结合实例形式分析了汉诺塔与Fibonacci数列的递归实现技巧,需要的朋友可以参考下
本文实例讲述了Python基于递归算法实现的汉诺塔与Fibonacci数列。分享给大家供大家参考,具体如下:
这里我们通过2个例子,学习python中递归的使用。
1. 找出Fibonacci数列中,下标为 n 的数(下标从0计数)
Fibonacci数列的形式是这样的:0,1,1,2,3,5,8,13……
① 使用while循环,python2代码如下:
def fib(n): a,b=0,1 count=0 while count<n: a,b=b,a+b count=count+1 print a
运行结果如下:
>>> fib(0)
0
>>> fib(1)
1
>>> fib(2)
1
>>> fib(3)
2
>>> fib(4)
3
>>> fib(5)
5
② 使用递归(递归必须要有边界条件),python2代码如下:
def fib(n): if n==0 or n==1:#递归的边界条件 return n else: return fib(n-1)+fib(n-2)
运行结果如下:
>>> fib(0)
0
>>> fib(1)
1
>>> fib(2)
1
>>> fib(3)
2
>>> fib(4)
3
>>> fib(5)
5
递归是最能表现计算思维的算法之一,我们以f(4)为例,看一下递归的执行过程:
同一程序,使用递归虽然程序简洁,但递归的执行效率要比循环低,系统的资源消耗比循环大。因为递归是一层一层地往里面调用,结束后又一层一层地返回,所以递归的执行效率并不高。那为什么还要使用递归呢?因为有一些问题,我们找不到非常明显的循环方案,但容易找到明显的递归方案。比如说著名的汉诺塔问题。
2. 汉诺塔
下图是一个简化版的汉诺塔游戏,只有4个盘子:
汉诺塔游戏规则如下:
python2代码如下:
def hanoi(a,b,c,n): if n==1:#递归结束条件 print a,'->',c else: hanoi(a,c,b,n-1) print a,'->',c hanoi(b,a,c,n-1)
运行结果:
>>> hanoi('A','B','C',1)
A -> C
>>> hanoi('A','B','C',2)
A -> B
A -> C
B -> C
>>> hanoi('A','B','C',3)
A -> C
A -> B
C -> B
A -> C
B -> A
B -> C
A -> C
相关推荐:
Atas ialah kandungan terperinci Python基于递归算法实现的汉诺塔与Fibonacci数列. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Buat tatasusunan pelbagai dimensi dengan numpy dapat dicapai melalui langkah-langkah berikut: 1) Gunakan fungsi numpy.array () untuk membuat array, seperti Np.Array ([[1,2,3], [4,5,6]]) untuk membuat array 2D; 2) Gunakan np.zeros (), np.ones (), np.random.random () dan fungsi lain untuk membuat array yang diisi dengan nilai tertentu; 3) Memahami sifat bentuk dan saiz array untuk memastikan bahawa panjang sub-array adalah konsisten dan mengelakkan kesilapan; 4) Gunakan fungsi np.reshape () untuk mengubah bentuk array; 5) Perhatikan penggunaan memori untuk memastikan bahawa kod itu jelas dan cekap.

Broadcastinginginnumpyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.itsImplifiescode, enhancesreadability, andboostsperformance.here'showitworks: 1) smallerarraysarepaddedwithonestomatchdimensions.2) CompatibeSt

Forpythondatastorage, chooselistsforflexabilityWithMixedDatatypes, array.arrayformemory-efficienthomogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatileButlessefficefientfientfientfientfientfientfientfientfientfientfientfientforydodeSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShoFficeSforaydataSetShoSforayDataSetsforayDataSetsforayDataSetsforaydataSetShiSforayDodeSforayDodeSforaydataSetRaydataSetRaydataSetRaydataSet

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1) listscanholdelementsofdifferenttypes, 2) thearedynamic, membolehkanEaseasyAdditionsandremoVals, 3) theofferintuitiitiveoperationslikeslicing, tetapi4).

ToAccessElementsInapyThonArray, useIndexing: my_array [2] AccessestHeTheRdeLement, returning3.pythonuseszero-berasaskanIndexing.1) USE sitiveandnegativeindexing: my_list [0] forthefirstelement, my_list [-1] forthelast.2) menggunakanSlicingForarangange: my_list [1: 5] ekstrakSelemen

Artikel membincangkan kemustahilan pemahaman tuple di Python kerana kekaburan sintaks. Alternatif seperti menggunakan tuple () dengan ekspresi penjana dicadangkan untuk mencipta tupel dengan cekap. (159 aksara)

Artikel ini menerangkan modul dan pakej dalam Python, perbezaan, dan penggunaannya. Modul adalah fail tunggal, manakala pakej adalah direktori dengan fail __init__.py, menganjurkan modul yang berkaitan secara hierarki.

Artikel membincangkan docstrings dalam python, penggunaan, dan faedah mereka. Isu Utama: Kepentingan Docstrings untuk Dokumentasi Kod dan Kebolehcapaian.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular
