Rumah > Artikel > pembangunan bahagian belakang > python知识分解析掷骰子游戏
本篇文章给大家分享的内容是关于python知识分解析掷骰子游戏 ,有着一定的参考价值,有需要的朋友可以参考一下。最近学习了点统计学及python知识,试着分析下掷骰子游戏。骰子按标准6面,分析一次投1颗、2颗、3颗、4颗,投掷10、100、1000、10000次时的结果。
使用工具
Jupyter Notebook 分析利器
matplotlib、pygal 可视化包
1-6中每个数字出现的次数
# 导入包 import pygal import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号 from random import randint
# 利用随机数据模拟掷骰子 # 每次显示1-6中的一个数 num_sides = 6 # 骰子的6个面 def getData(N, times): """ 定义函数,获取投掷数据 N: 表示一次用几个骰子投 times:表示总共投几次 """ results = [] for n in range(1,N+1): for roll_num in range(times): result = randint(1,num_sides) results.append(result) return results
# 打印投掷结果 print(getData(1,10)) # 1个骰子掷10次 print(getData(2,5)) # 2个骰子掷5次
[2, 2, 2, 2, 1, 6, 4, 4, 5, 5] [4, 3, 5, 6, 2, 2, 3, 6, 4, 4]
# 分析结果# 统计每个数字出现的次数并显示图片 # N: 表示一次用几个骰子投 # data 表示投掷数据def showResult(N, times): frequencies = [] for value in range(1, num_sides+1): frequency = getData(N, times).count(value) frequencies.append(frequency) # 数据可视化 # 本次利用 pygal 生成SVG格式矢量图 hist = pygal.Bar() hist.title = str(N)+"个骰子掷"+ str(times) +"次的结果" hist.x_labels = ['1','2','3','4','5','6'] hist.x_title = "点数" hist.y_title = "出现次数" hist.add(str(N)+'骰子', frequencies) hist.render_to_file('1-'+str(N)+str(times)+'.svg') # 储存为矢量图
# 一个骰子掷10,100, 1000, 10000次结果分析showResult(1,10) showResult(1,100) showResult(1,1000) showResult(1,10000)
# 2个骰子掷10,100, 1000, 10000次结果分析showResult(2,10) showResult(2,100) showResult(2,1000) showResult(2,10000)
3个骰子、4个骰子就不再截图了。
我们发现在投掷的次数越多,每个数出现的概率越接近,最后趋向于相同。
每次投掷点数和
# 每次投掷点数和def getData2(N, times): """ 定义函数,获取投掷数据 N: 表示一次用几个骰子投 times:表示总共投几次 """ results = [] for roll_num in range(times): result = 0 for n in range(1,N+1): result += randint(1,num_sides) results.append(result) return results
# 打印投掷结果print(getData2(1,10)) # 1个骰子掷10次print(getData2(2,5)) # 2个骰子掷5次
[4, 3, 6, 2, 5, 4, 5, 3, 6, 2] [6, 10, 5, 8, 7]
# 分析结果# 统计数字和出现的次数并显示图片 # N: 表示一次用几个骰子投 # data 表示投掷数据def showResult2(N, times): frequencies = [] for value in range(N, N*num_sides+1): frequency = getData2(N, times).count(value) frequencies.append(frequency) # 数据可视化 # 本次利用 matplotlib 生成图片 x_num = N*num_sides+1-N idx = np.arange(x_num) width = 0.5 sn = str(N) sm = str(times) x_labels = [str(n) for n in range(N, N*num_sides+1)] # X轴刻度 plt.bar(idx, frequencies, width, color='red', label=sn+'个骰子') plt.xlabel('点数和') plt.ylabel('出现次数') plt.title(sn+'个骰子投掷'+ sm +'次的结果') plt.xticks(idx, x_labels) plt.legend() # 显示图例 plt.show()
1颗骰子猜大小没多大意义,我们直接来分析两骰子的情况。
# 2个骰子掷10,100, 1000, 10000次结果分析showResult2(2,10) showResult2(2,100) showResult2(2,1000) showResult2(2,10000)
# 3个骰子掷10,100, 1000, 10000次结果分析showResult2(3,10) showResult2(3,100) showResult2(3,1000) showResult2(3,10000)
# 4个骰子掷10,100, 1000, 10000次结果分析showResult2(4,10) showResult2(4,100) showResult2(4,1000) showResult2(4,10000)
从上面几图中我们可以看到,当投掷次数足够多时,出现大/小点数出现的概率基本相同,点数大小呈现正态分布的特点。
相关推荐:
Atas ialah kandungan terperinci python知识分解析掷骰子游戏. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!